• Title/Summary/Keyword: astronomical observation experience

Search Result 24, Processing Time 0.022 seconds

An Analysis on Astronomical Observation Experience of Elementary Students and Teachers (초등학교 학생과 교사의 천체관측 경험 실태 분석)

  • Han, Je-Jun;Lim, Sung-Man;Yang, Il-Ho;Chae, Dong-Hyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.2
    • /
    • pp.166-174
    • /
    • 2012
  • This study is purposed to survey on astronomical observation experiences of elementary students and teachers. Survey samples are 182 elementary students and 51 elementary teachers, and 8 students and 2 teachers among them are interviewed. The results of this study show that most elementary students are not interested in observing constellations, planets, and moon. Also most elementary students and teachers are not taught to observe astronomical objects. Finally, regarding the difficulty of astronomical practice, teachers pointed out that lack of knowledge about astronomy.

A Phenomenological Study on Earth Science Teachers' Experiences of Astronomical Observation Activities (지구과학 교사의 천체 관측 활동 경험에 대한 현상학적 연구)

  • Heungjin Eom;Hyunjin Shim
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.195-211
    • /
    • 2022
  • In this study, we explored the meaning of astronomical observation activities of five earth science teachers through in-depth interviews. Semi-structured interviews were conducted after providing a questionnaire based on Seidman's three-step process of interview. By analyzing the interview transcript, the educational implications inherent in astronomical observation activities were extracted. Teachers have constructed systematic basis of observation and astronomy in the observational astronomy and laboratory class during their course in the teacher education institute. After they became in-service teachers, practical know-hows of astronomical observation activities in schools were developed with the help of colleagues. By designing and executing astronomical observation activities for students, teachers notice positive changes in the cognitive domain, affective domain, and career perception of the students. Hence, teachers consider that astronomical observation activities have great educational effects. In addition, astronomical activities appear to be very rewarding and satisfying experiences to teachers, by providing opportunities for having pride as an earth science teacher. However, teachers tend to find difficulties in operating astronomical observation activities in fields, due to both internal and external obstacles. It is found that the removal of internal obstacles is more important for teachers to attempt or to continue astronomical observation activities. In this sense, it is necessary to support teachers by providing timely training courses with related content, as well as opportunities to share their experiences within a peer group such as teachers' research society.

The Experiences of High School Students about Astronomical Observation Activities Seen through the Movement of Deleuzian "Becoming" (들뢰즈의 '되기' 운동으로 바라본 고등학생들의 천체 관측 활동 경험)

  • Seok-Young Hong;Youngsun Kwak
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.147-156
    • /
    • 2024
  • Science practice is a process of establishing new relationships with 'foreign things' such as learning objects or tools for observation and measurement. Since the practice of science in major subjects has been increasingly emphasized, we sought to understand the meaning co-created by students and numerous materials who have experienced astronomical observation as a Deleuzian experience of "becoming". We collected activity logs and photographic data written by 17 students participating in astronomical observation activities at "A" High School, and conducted in-depth interviews with the students. We assessed the collected data by reconstructing a situation analysis. The main research results include the students' existential-epistemological 'becoming' process: 1) discovering newness through repetition, 2) becoming an 'explanation machine' to convey the affect of astronomical observation activities, 3) breaking out of a stabilized territory, and crossing a threshold. Based on the results, we suggested the need for follow-up research on the practices and new experimental approaches of teachers in earth science education.

Exoplanet Science Cases with Small Telescope Network

  • Kang, Wonseok;Kim, Taewoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.60.2-60.2
    • /
    • 2019
  • Based on our experience on exoplanet transit observation, we propose the exoplanet science cases with Small Telescope Network. One is the follow-up observation for validation of exoplanet candidates. TESS(Transiting Exoplanet Survey Satellite) is pouring out exoplanet candidates in bright stars(V<15) on all the sky. Since Small Telescope Network will consist of 0.5-1m telescopes, we will expect to produce promising outcomes from the follow-up observation of bright candidates. Next is the transit time observation. By spectroscopy of space and large telescopes during transit event, it can be possible to find the bio signatures in exoplanet atmosphere. So, in terms of cost, it is critical to determine the exact time of transit event. In addition, detecting the variation of transit time can reveal another exoplanet and exomoon in the system. In order to determine the transit time and its variation, the accumulation of transit event data is more important than the quality of photometric data. We expect that it can be a challenging project of Small Telescope Network.

  • PDF

Goheung Radio Interferometer and its Applications for Youth

  • Ha, Ji-Sung;Park, Yong-Sun;Han, Junghwan;Kang, Wonseok;Lee, Sang-Gak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.83.2-83.2
    • /
    • 2015
  • The Goheung radio interferometer with three 1.8-m antennas has been installed at National Youth Space Center in Goheung, Korea. The interferometric observation of the Sun using the Goheung radio interferometer was carried out and the observed data was analysed to construct the radio contour map of the Sun in 2014. The specifications of Goheung radio interferometer and the synthesized interferometer map of the Sun are provided. As a science activity center for youth, we currently provide students some experimental activities based on the principle of radio observation and interferometer. Our goal is to encourage youth to be interested in astronomy by engaging real experience of radio observation and constructing a synthesized interferometer map with observed data.

  • PDF

Effect of the Application of the CBD Output Management Technique for the Development of Operation Software for a Space Observation System

  • Seo, Yoon Kyung;Rew, Dong Young;Kirchner, Georg;Nah, Jakyoung;Jang, Bi-Ho;Heo, Jiwoong;Youn, Cheong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2014
  • The application of software engineering is not common in the development of astronomical observation system. While there were component-wise developments in the past, large-scale comprehensive system developments are more common in these days. In this study, current methodologies of development are reviewed to select a proper one for the development of astronomical observation system and the result of the application is presented. As the subject of this study, a project of operation software development for an astronomical observation system which runs on the ground is selected. And the output management technique based on Component Based Development which is one of the relatively recent methodologies has been applied. Since the nature of the system requires lots of arithmetic algorithms and it has great impact on the overall performance of the entire system, a prototype model is developed to verify major functions and performance. Consequently, it was possible to verify the compliance with the product requirements through the requirement tracing table and also it was possible to keep to the schedule. Besides, it was suggested that a few improvements could be possible based on the experience of the application of conventional output management technique. This study is the first application of the software development methodology in the domestic astronomical observation system area. The process and results of this study would contribute to the investigation for a more appropriate methodology in the area of similar system development.

ENHANCING THE TEACHING AOF STRONOMY IN SCHOOLS THROUGH WORKSHOPS FOR TEACHERS

  • CHEN, LAU CHEN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.725-727
    • /
    • 2015
  • The Malaysian Space Agency (ANGKASA), with cooperation of the Ministry of Education of Malaysia, has organized the Astronomy Workshop for Primary and Secondary School Teachers since 2008 at the National Planetarium. The workshop was organized to provide science teachers with basic knowledge of astronomy in accordance with the school syllabus, with the hope that they can acquire sufficient knowledge in the field of astronomy to enhance their teaching activities in school. In this workshop, teachers will be introduced to night sky simulations in our space theater, a planetarium show, daytime and night time observation activities, hands on activities, and visits to the planetarium's observatory and exhibition gallery. Besides this, in the workshop they will share teaching experience with planetarium staff. Educational materials are also distributed to all the teachers as reference for their teaching. In this paper presentation, we would like to show how the National Planetarium plays an important role to help teachers in teaching astronomy in schools.

Optical telescope with spectro-polarimetric camera on the moon

  • KIM, Ilhoon;HONG, Sukbum;KIM, Joohyun;Seo, Haingja;Kim, Jeong hyun;Choi, Hwajin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2021
  • A Lunar observatory not only provides ideas and experiences for space settlements from the Moon to Mars, but also puts the telescope in an optimal position to compete with space telescopes. Earth observation on the Moon's surface has the advantage of no atmospheric scattering or light pollution and is a stable fuel-free observation platform, allowing all longitude and latitude of the Earth to be observed for a month. Observing the entire globe with a single observation instrument, which has never been attempted before, and calculating the global albedo will significantly help predict the weather and climate change. Spectropolarimetric observations can reveal the physical and chemical properties of the Earth's atmosphere, track the global distribution and migration path of aerosols and air pollutants, and can also help detect very small space debris of which the risk has increased recently. In addition, the zodiacal light, which is difficult to observe from Earth, is very easy to observe from the lunar observatory, so it will be an opportunity to reveal the origin of the solar system and take a step closer to understanding the exoplanet system. In conclusion, building and developing a lunar observatory will be a groundbreaking study to become the world's leader that we have never tried before as a first step in expanding human experience and intelligence.

  • PDF

Toward Next Generation Solar Coronagraph: Diagnostic Coronagraph Experiment

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jaeok;Bong, Suchan;Choi, Seonghwan;Kim, Jihun;Park, JongYup;Park, YoungDeuk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2019
  • Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed using four different filters around 400 nm. To demonstrate technology for the measurement through the 2017 total solar eclipse across the USA, KASI organized an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, so-called Diagnostic Coronal Experiment (DICE), which is composed of two identical telescopes to improve a signal to noise ratio. The observation was conducted with 4 wavelengths and 3 linear polarization directions according to the planned schedule in a limited total eclipse time of about 140 seconds.Polarization information of corona from the data was successfully obtained but we failed to get the coronal electron temperature and speed information due to a low signal-to-noise ratio of the optical system. In this study, we report the development of DICE and observation results. TSE observation and analysis by using our own developed instrument gave an important lesson that a coronagraph should be carefully designed to archive the scientific purpose. This experience through TSE observation will be very useful for a success of NASA-KASI joint missions called the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and COronal Diagnostic EXperiment (CODEX).

  • PDF

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).