• Title/Summary/Keyword: astronomical concept

Search Result 69, Processing Time 0.025 seconds

DESIGN CONCEPT FOR THE RETROFIT KAO 1M ROBOTIC TELESCOPE

  • Han, Won-Yong;Mack, Peter;Park, Jang-Hyun;Jin, Ho;Lee, Woo-Baik;Lee, Chung-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.211-220
    • /
    • 2000
  • Korea Astronomy Observatory(KAO) is working to retrofit its 1m robotic telescope in collaboration with a company (ACE, Astronomical Consultants & Equipment). The telescope system is being totally refurbished to make a fully automatic telescope which can operate in both interactive and fully autonomous robotic modes. Progress has been made in design and manufacturing of the telescope mount, mechanics, and optical performance system tests are being made for re-configured primary and secondary mirrors. The optical system is designed to collect 80% incident light within 0.5 arcsec with f/7.5 Ritchey-Chretien design. The telescope mount is an equatorial fork with a friction drive system. The design allows fully programmable tracking speeds with typical range of 15 arcsec/sec with accuracy of $\pm5$ arcsec/hour. The mount system has integral pointing model software to correct for refraction, and all mechanical errors and misalignments. The pointing model will permit positioning to better than 30 arcsec RMS within $75^{\circ}$ from zenith and 45 arcsec RMS elsewhere on the sky. The software is designed for interactive, remote and robotic modes of operation. In interactive and remote mode the user can manually enter coordinates or retrieve them from a computer file. In robotic mode the telescope controller downloads the coordinates in the order determined by the scheduler. The telescope will be equipped with a CCD camera and will be accessible via the internet.

  • PDF

PREDICTION OF THE DETECTION LIMIT IN A NEW COUNTING EXPERIMENT

  • Seon, Kwang-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • When a new counting experiment is proposed, it is crucial to predict whether the desired source signal will be detected, or how much observation time is required in order to detect the signal at a certain significance level. The concept of the a priori prediction of the detection limit in a newly proposed experiment should be distinguished from the a posteriori claim or decision whether a source signal was detected in an experiment already performed, and the calculation of statistical significance of a measured source signal. We formulate precise definitions of these concepts based on the statistical theory of hypothesis testing, and derive an approximate formula to estimate quickly the a priori detection limit of expected Poissonian source signals. A more accurate algorithm for calculating the detection limits in a counting experiment is also proposed. The formula and the proposed algorithm may be used for the estimation of required integration or observation time in proposals of new experiments. Applications include the calculation of integration time required for the detection of faint emission lines in a newly proposed spectroscopic observation, and the detection of faint sources in a new imaging observation. We apply the results to the calculation of observation time required to claim the detection of the surface thermal emission from neutron stars with two virtual instruments.

THE PROSPECT OF INTERSTELLAR OBJECT EXPLORATIONS FOR SEARCHING LIFE IN COSMOS (우주생명현상과 성간천체 탐사 전망)

  • Minsun Kim;Ryun Young Kwon;Thiem Hoang;Sungwook E. Hong
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.25-36
    • /
    • 2023
  • Since interstellar objects like 1I/'Oumuamua and 2I/Borisov originate from exoplanetary systems, even if we do not visit the exoplanetary systems, flyby, rendezvous, and sample return missions of interstellar objects can provide clues to solve the mysteries of cosmic life phenomena such as the origin of exoplanetary systems, galactic evolution, biosignatures (or even technosignatures), and panspermia. In this paper, we review space missions for interstellar object exploration in the stage of mission design or concept study such as Project Lyra, Bridge, Comet Interceptors, and LightcraftTM. We also review space missions, OSIRIS-REx and NEA Scout, designed for Near Earth Asteroids(NEA) explorations, to investigate the current state of basic technologies that can be extended to explore interstellar objects in a velocity of ~ 6AU/year. One of the technologies that needs to be developed for interstellar object exploration is a spacecraft propulsion method such as solar sail, which can catch up with the fast speed of interstellar objects. If this kind of propulsion becomes practical for space explorations, interstellar object explorations will mark a new era and serve as a driving force to provide evidences of cosmic life.

System Requirement Review of Lunar Surface magnetometer on the CLPS program

  • Jin, Ho;Kim, Khan-Hyuk;Lee, Seongwhan;Lee, Hyojeong;Seon, Daerac;Jung, Byungwook;Jang, Yunho;Park, Hyeonhu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute is participating as a South Korean partner in the Commercial Lunar Payload Services (CLPS)of NASA. In response, the Korea Astronomy and Space Science Institute is currently conducting basic research for the development of four candidate instrument payloads. The magnetic field instrument is one of them and it's scientific mission objective is the moon's surface magnetic field investigation. Therefore, the development requirement of the lunar surface magnetic field instrument were derived and the initial conceptual design was started. The magnetic field instrument has a 1.2 meter boom which has two three-axis fluxgate magnetometer sensors and one gyro sensor to get a attitude information of the boom. The concept of measuring the lunar surface magnetic field will carry out using multiple sensors by placing semiconductor type magnetic field sensors inside the electric box including boom mounted fluxgate sensors. In order to overcome the very short development period, we will use the KPLO (Korean Lunar Pathfinder Orbiter) magnetometer design and parts to improve reliabilities for this instrument. In this presentation, we introduce the instrument requirements and conceptual design for the Lunar surface magnetic field instruments.

  • PDF

Exploring 6th Graders Learning Progression for Lunar Phase Change: Focusing on Astronomical Systems Thinking (달의 위상 변화에 대한 초등학교 6학년 학생들의 학습 발달과정 탐색: 천문학적 시스템 사고를 중심으로)

  • Oh, Hyunseok;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.103-116
    • /
    • 2018
  • The purpose of this study was to explore $6^{th}$ graders learning progression for lunar phase change focusing astronomical systems thinking. By analyzing the results of previous studies, we developed the constructed-response items, set up the hypothetical learning progressions, and developed the item analysis framework based on the hypothetical learning progressions. Before and after the instruction on the lunar phase change, we collected test data using the constructed-response items. The results of the assessment were used to validate the hypothetical learning progression. Through this, we were able to explore the learning progression of the earth-moon system in a bottom-up. As a result of the study, elementary students seemed to have difficulty in the transformation between the earth-based perspective and the space-based perspective. In addition, based on the elementary school students' learning progression on lunar phase change, we concluded that the concept of the lunar phase change was a bit difficult for elementary students to learn in elementary science curriculum.

PRESENT STATUS AND SCIENTIFIC FACTOR ANALYSIS ON ITS PAST PROBLEMS OF THE INTERNATIONAL OLYMPIAD ON ASTRONOMY AND ASTROPHYSICS (국제천문 및 천체물리 올림피아드 현황과 기출문항에 대한 과학탐구 유형 분석)

  • Yim, In-Sung;Sung, Hyun-Il;Han, In-Woo;Kim, Yoo-Jea;Choe, Seung-Urn
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.3
    • /
    • pp.89-101
    • /
    • 2011
  • The International Olympiad on Astronomy and Astrophysics (IOAA) initiated by the Thailand Astronomical Society in 2007 is an annual competition for high school students. One of its aim is to enhance the development of international exchange in the field of school education in astronomy and astrophysics. This paper first provides the overview of the IOAA in terms of key regulations based on its statutes, history and current status. Secondly, the published syllabus of the IOAA is used for content analysis according to subject areas regarding the exam questions of the IOAA in theoretical, observational and data analysis parts from 2007 to 2010. Also, a scientific inquiry framework is applied to the same questions for assessment based on scientific inquiry in the cognitive aspect with two sub-classes of scientific knowledge and scientific reasoning. Among a dozen astronomy subject areas listed on the syllabus, the theoretical part of the IOAA makes more frequent use of the Sun, the solar system, properties of stars, and concept of time. In content knowledge, a factor of scientific knowledge, the IOAA questions, especially in the theoretical part have a lesser degree in difficulty than the IAO (International Astronomy Olympiad) exam questions for the same period whose degree in difficulty is comparable to college level. With regard to scientific reasoning, the IOAA questions tend to involve convergent rather than divergent thinking. Lastly, in light of these findings, discussions are given on the outcome of Korean participation in the previous IOAAs and ways to help better in preparing Korean students for future astronomy Olympiads.

A Study on the Treatments of Yiyuan(醫原) based on the Concepts of Dryness and Dampness (『의원(醫原)』의 조습논치(燥濕論治)에 대한 고찰)

  • Eun, Seokmin
    • Journal of Korean Medical classics
    • /
    • v.29 no.1
    • /
    • pp.77-97
    • /
    • 2016
  • Objectives : Yiyuan(醫原) written by Shi Shoutang(石壽棠) is well known for its focusing on the concept of dryness and dampness in medical theory. This study was done to analyze the formation process of main academic thought in Yiyuan, which included tracing its original sources that had made it possible to construct the main idea in this book. Methods : Firstly, Yiyuan was analyzed in comparison with Yili(醫理) by Yu Guopei(余國佩), which is regarded as the main origin of Yiyuan. And secondly, many diverse medical theories before Yu Guopei and Shi Shoutang was scrutinized to understand the process of the construction of dryness/dampness-centered medical theory. Results & Conclusions : Shi Shoutang took over the main idea of Yu Guopei and expanded it both in theoretical and clinical aspects. Especially, the most remarkable contribution by Shi Shoutang can be said that he used the astronomical theory which had the concept of multi-layered heaven and intensified the theoretical basis of medical theory emphasizing the significance of dryness and dampness. Besides, Shi Shoutang's medical theory was a thing which was also based on many cumulative assertions about dryness and dampness before him. Yu Jiayan's assertion on dryness and dampness could be acknowledged as the most influential one, and it also could be said that the arguments surrounding the property of dryness had formed the main question in the development of medical theory centered on dryness and dampness.

The Effect of the Consistent Presentation of Illustration about the Aligning Direction of the Axis on the Middle School Students' Acquisition and Retention of Astronomical Concepts (자전축 기울기 방향의 일관된 삽화 제시가 중학생의 천문 개념 형성과 파지에 미치는 영향)

  • Cho, Hyunjun;Lee, Ho;Jo, Misun;Jeong, Jin-Woo;Wee, Soo-Meen;Sohn, Jungjoo;Lee, Hyonyong;Kim, Hyeon-Jeong
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.193-206
    • /
    • 2009
  • The purpose of this study was to examine the effect of the consistent presentation of illustrations about the aligning direction of the Axis on the middle school students' acquisition and retention of astronomical concepts. This study was taken using the nonequivalent control-group pretest-posttest design on 116 7th middle school subjects. The same teaching and learning activities were given to both the experimental (n=59) and control groups (n=57) through three lessons. The experimental group was given a consistent presentation of the illustrations about the aligning direction of the Axis, while the control group was given an inconsistent presentation of the same illustrations about aligning direction. Two days after the three lessons, the 1st posttest was administered to compare the statistical difference of mean of both groups, using ANCOVA test. The result of ANCOVA test implicated that the consistent presentation of the illustrations about the aligning direction of the Axis had a positive influence on the experimental group's acquisition of the concepts. The 2nd posttest result for retention effect was given two month later by one-paired t-Test in each group and showed that the method had a positive effect on the experimental group, compared with control group. The results of this study implicated that paying careful attention to using the consistent illustration is highly beneficial for students' meaningful learning on astronomical concepts.

  • PDF

Alignment estimation performance of Multiple Design Configuration Optimization for three optical systems

  • Oh, Eun-Song;Kim, Seong-Hui;Kim, Yun-Jong;Lee, Han-Shin;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • In this study, we investigated alignment state estimation performances of the three methods i.e. merit function regression (MFR), differential wavefront sampling (DWS) and Multiple Design Configuration Optimization (MDCO). The three target optical systems are 1) a two-mirror Cassegrain system for deep space Earth observation, 2) intermediate size three-mirror anastigmat for Earth ocean monitoring, and 3) extremely large segmented optical system for astronomical observation. We ran alignment state estimation simulation for several alignment perturbation cases including 1mm to 10mm in decenter and from 0.1 to 1 degree in tilt perturbation error for the two-mirror Cassegrain system. In general, we note that MDCO shows more competitive estimation performance than MFR and DWS. The computational concept, case definition and the simulation results are discussed with implications to future works.

  • PDF

Participation in G-CLEF Preliminary Design Study by KASI

  • Kim, Kang-Min;Chun, Moo-Young;Park, Chan;Park, Sung-Joon;Kim, Jihun;Oh, Jae Sok;Jang, Jeong Gyun;Jang, Bi Ho;Tahk, Gyungmo;Nah, Jakyoung;Yu, Young Sam;Szentgyorgyi, Andrew;Norton, Timothy;Podgorski, William;Evans, Ian;Mueller, Mark;Uomoto, Alan;Crane, Jeffrey;Hare, Tyson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.52.3-53
    • /
    • 2015
  • The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical band high dispersion echelle spectrograph that selected as the first light instrument for the Giant Magellan Telescope (GMT). This G-CLEF has been designed to be a general- purpose echelle spectrograph with the precisional radial velocity (PRV) capability of 10 cm/sec as a goal. The preliminary design review (PDR) was held on April 8 to 10, 2015 and the scientific observations will be started in 2022 with four mirrors installed on GMT. We have been participating in this preliminary design study in flexure control camera (slit monitoring system), calibration lamp sources, dichroic assembly and the fabrication of the proto-Mangin Mirror. We present the design concept on the parts KASI undertaken, introducing the specifications and capabilities of G-CLEF.

  • PDF