• 제목/요약/키워드: astrocytes

검색결과 281건 처리시간 0.03초

Role of Carbon Monoxide in Neurovascular Repair Processing

  • Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.93-100
    • /
    • 2018
  • Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). Endogenous CO production occurring at low concentrations is thought to have several useful biological roles. In mammals, especially humans, a proper neurovascular unit comprising endothelial cells, pericytes, astrocytes, microglia, and neurons is essential for the homeostasis and survival of the central nervous system (CNS). In addition, the regeneration of neurovascular systems from neural stem cells and endothelial precursor cells after CNS diseases is responsible for functional repair. This review focused on the possible role of CO/HO in the neurovascular unit in terms of neurogenesis, angiogenesis, and synaptic plasticity, ultimately leading to behavioral changes in CNS diseases. CO/HO may also enhance cellular networks among endothelial cells, pericytes, astrocytes, and neural stem cells. This review highlights the therapeutic effects of CO/HO on CNS diseases involved in neurogenesis, synaptic plasticity, and angiogenesis. Moreover, the cellular mechanisms and interactions by which CO/HO are exploited for disease prevention and their therapeutic applications in traumatic brain injury, Alzheimer's disease, and stroke are also discussed.

6-Aminonicotinamide 투여 후 햄스터 척수의 미세구조 변화 (Ultrastructural Changes of the Spinal Cord after Treatment with 6-Aminonicotinamide)

  • 양영철
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.281-293
    • /
    • 1997
  • The effects of antimetabolite, 6-aminonicotinamide (6-AN), on ultrastrudural changes in the spinal cord of golden hamster were investigated. Intraperitoneal administration of 6-AN (10 mg/kg body weight) every two days gave rise to a marked reduction of about $30\sim40%$ in body weight after $26\sim28$ days ($13\sim14th$ injection). In the lesions of the spinal cord, neuroglial cells such as astrocytes and oligodendrocytes were severely damaged, but neurons and blood vessels were not affected by 6-AN. The myelin sheath was also affected by 6-AN. Vacuoles observed in the lesions were produced by the swelling and degenerating changes of neuropils and neuroglial cells. Numerous swollen mitochondria and cisterns of rough endoplasmic reticulum were observed in the watery cytoplasm of damaged neuroglial cells, but intermediate filaments were well preserved. Especially in the damaged astrocytes, the outer nuclear membrane were partially swollen and formed a halfmoonlike structure. It is suggested that as well as the multivesicular bodies protruding from the swollen dendrites, the conjugation of adjacent vacuoles also participated in the formation of large vacuoles.

  • PDF

Essential Role for c-jun N-terminal Kinase on tPA-induced Matrix Metalloproteinase-9 Regulation in Rat Astrocytes

  • Lee, Sun-Ryung
    • Animal cells and systems
    • /
    • 제10권2호
    • /
    • pp.79-83
    • /
    • 2006
  • Tissue plasminogen activator (tPA) is used to lyse clots and reperfuse brain in ischemic stroke. However, sideeffects of intracerebral hemorrhage (ICH) and edema limit their clinical application. In part, these phenomena has been linked with elevations in matrix metalloproteinase-9 (MMP-9) in neurovascular unit. However little is known about their regulatory signaling pathways in brain cells. Here, I examine the role of MAP kinase pathways in tPA-induced MMP-9 regulation in rat cortical astrocytes. tPA $(1-10\;{\mu}g/ml)$ induced dose-dependent elevations in MMP-9 and MMP-2 in conditioned media. Although tPA increased phosphorylation in two MAP kinases (ERK, JNK), only inhibition of the JNK pathway by the JNK inhibitor SP600126 significantly reduced MMP-9 upregulation. Neither ERK inhibition with U0126 nor p38 inhibition with SB203580 had any significant effects. Taken together, these results suggest that c-jun N-terminal kinase (JNK) plays an essential role for tPA-induced MMP-9 upregulation.

Adenosine inhibits the death in immunostimulated murine astrocytes deprived of glucose

  • Choi, Min-Sik;Chang, Eun-Sook;Park, Ji-Woong;Yoo, Byung-Kwon;Park, Gyu-Hwan;Lee, Woo-Jong;Yoon, Suh-Young;Ko, Kwang-Ho
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.302.1-302.1
    • /
    • 2002
  • Adenosine has been associated with protection of neurons from noxious stimuli both by receplor- and non receptor-mediated mechanisms. Previously we have reported that immunostimulated astrocytes were highly vulnerable to glucose deprivation. In the present study we investigated the effect of adenosine and related nucleotides on the susceptibility of immunostimulated astrocytes to glucose deprivation. (omitted)

  • PDF

Primary astrocytic mitochondrial transplantation ameliorates ischemic stroke

  • Eun-Hye Lee;Minkyung Kim;Seung Hwan Ko;Chun-Hyung Kim;Minhyung Lee;Chang-Hwan Park
    • BMB Reports
    • /
    • 제56권2호
    • /
    • pp.90-95
    • /
    • 2023
  • Mitochondria are important organelles that regulate adenosine triphosphate production, intracellular calcium buffering, cell survival, and apoptosis. They play therapeutic roles in injured cells via transcellular transfer through extracellular vesicles, gap junctions, and tunneling nanotubes. Astrocytes can secrete numerous factors known to promote neuronal survival, synaptic formation, and plasticity. Recent studies have demonstrated that astrocytes can transfer mitochondria to damaged neurons to enhance their viability and recovery. In this study, we observed that treatment with mitochondria isolated from rat primary astrocytes enhanced cell viability and ameliorated hydrogen peroxide-damaged neurons. Interestingly, isolated astrocytic mitochondria increased the number of cells under damaged neuronal conditions, but not under normal conditions, although the mitochondrial transfer efficiency did not differ between the two conditions. This effect was also observed after transplanting astrocytic mitochondria in a rat middle cerebral artery occlusion model. These findings suggest that mitochondria transfer therapy can be used to treat acute ischemic stroke and other diseases.

Inhibition of eNOS/sGC/PKG Pathway Decreases Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus

  • Lee, Sang-Hyun;Byun, Jong-Seon;Kong, Pil-Jae;Lee, Hee-Jae;Kim, Duk-Kyung;Kim, Hae-Sung;Sohn, Jong-Hee;Lee, Jae-Jun;Lim, So-Young;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.37-43
    • /
    • 2010
  • The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNDS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNDS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNDS by eNDS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.

Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes

  • Hyun Jung Lee;Hye Rim Cho;Minji Bang;Yeo Song Lee; Youn Jin Kim; Kyuha Chong
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권4호
    • /
    • pp.418-430
    • /
    • 2024
  • Objective : Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. Methods : This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 µM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. Results : A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 µM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 µM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. Conclusion : The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.

Chronic exposure of nicotine modulate the expressions of cerebellar glial glutamate transporters in rats

  • Lim, Dong-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.287.1-287.1
    • /
    • 2002
  • To study the expressions of glutamate transporter subtypes in cerebellar astrocytes following the chronic exposure of nicotine from mating, rats were treated with nicotine (25 ppm) from the beginning of mating through drinking water. After delivery. each group was divided into two groups. Groups were exposed to either distilled water or nicotine. From 7 day-old pups at each group. cerebellar astrocytes were prepared. Ten days after culture. the expressions of glutamate transporter subtypes (GLAST and GLT-1) were determined using immunochemistry and immunoblot. (omitted)

  • PDF

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • 제60권6호
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.