• Title/Summary/Keyword: association-rule

Search Result 1,233, Processing Time 0.028 seconds

A study on email efficiency on recommendation system (추천시스템을 이용한 이메일 효율성 제고에 관한 연구)

  • Kim, Yon-Hyong;Lee, Seok-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1129-1143
    • /
    • 2009
  • This paper proposes a recommendation system (Association Rule System for Targeting) which considers target which is not considered by previous Logistic Regression system, and proves that the efficiency of the recommendation system is better than that of the current and previous Apriori algorithm system. Also this study shows that the click and purchasing rate of the proposed Association Rule System for Targeting is much higher than those of current Apriori algorithm system after the purchasing campaign even though the open rate of the former is lower than that of the latter. In comparison with Logistic Regression methodology, this paper proves with experimental data that the purchasing effect of the proposed system for specific items is much higher in accuracy than that of current Apriori algorithm system even though the purchasing rate of current Apriori algorithm system is higher in whole shopping malls than that of the proposed Association Rule System for Targeting.

  • PDF

A study on the relatively causal strength measures in a viewpoint of interestingness measure (흥미도 측도 관점에서 상대적 인과 강도의 고찰)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Among the techniques for analyzing big data, the association rule mining is a technique for searching for relationship between some items using various relevance evaluation criteria. This associative rule scheme is based on the direction of rule creation, and there are positive, negative, and inverse association rules. The purpose of this paper is to investigate the applicability of various types of relatively causal strength measures to the types of association rules from the point of view of interestingness measure. We also clarify the relationship between various types of confidence measures. As a result, if the rate of occurrence of the posterior item is more than 0.5, the first measure ($RCS_{IJ1}$) proposed by Good (1961) is more preferable to the first measure ($RCS_{LR1}$) proposed by Lewis (1986) because the variation of the value is larger than that of $RCS_{LR1}$, and if the ratio is less than 0.5, $RCS_{LR1}$ is more preferable to $RCS_{IJ1}$.

A Recursive Procedure for Mining Continuous Change of Customer Purchase Behavior (고객 구매행태의 지속적 변화 파악을 위한 재귀적 변화발견 방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Choi, Ju-Cheol;Song, Hee-Seok;Cho, Yeong-Bin
    • Information Systems Review
    • /
    • v.8 no.2
    • /
    • pp.119-138
    • /
    • 2006
  • Association Rule Mining has been successfully used for mining knowledge in static environment but it provides limited features to discovery time-dependent knowledge from multi-point data set. The aim of this paper is to develop a methodology which detects changes of customer behavior automatically from customer profiles and sales data at different multi-point snapshots. This paper proposes a procedure named 'Recursive Change Mining' for detecting continuous change of customer purchase behavior. The Recursive Change Mining Procedure is basically extended association rule mining and it assures to discover continuous and repetitive changes from data sets which collected at multi-periods. A case study on L department store is also provided.

Discovery Of Cyclic Association Rule With Loose Cycle and Error Cycle over Loose Cycle (오차를 허용하는 주기적 연관규칙 탐사를 통한 오차의 경향성에 관한 연구)

  • 배수균;남도원;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.317-324
    • /
    • 2000
  • 주기적인 연관규칙은 타겟데이터베이스를 일정 단위시간으로 나누었을 때 연관규칙이 만족하는 구간이 일정한 주기마다 발생하는 패턴을 탐색하는 방법이다. 하지만, 이 방법은 엄격한 주기를 가지도록 하여 실제 데이터에 그대로 적용하기가 어려웠다. 예를 들이 편의점 데이터에서 매일 오전 7시-8시 사이에 주기적으로 발생하는 연관규칙을 발견할 때, 이러한 연관규칙을 주기적인 연관규칙이라고 한다. 하지만, 실제 데이터에서는 날씨와 같이 사람의 행동에 영향을 미치는 다른 요인 때문에 항상 일정한 주기를 가지는 연관규칙을 찾기는 어렵다. 본 논문에서는 주기가 일정하지 않은 연관규칙을 찾기 위해서 연관규칙의 주기성을 허용 오차를 포함하며 재정의하고, 오차를 허용하기 위한 탐색 알고리즘을 보완하였다. 반면에, 오차를 허용함으로써 오차를 허용하지 않는 경우보다 더 많은 주기성을 찾을 수 있을 뿐만 아니라, 동일한 주기를 가지지만 오프셋이 다른 여러 개의 비슷한 주기가지 찾게 되어 사용자가 의미 있는 연관규칙을 찾는데 방해가 된다. 본 논문에서는 이를 해결하기 위해서 오차를 허용하는 주기적 연관규칙의 오차의 정도를 측정하기 위한 단위로 집중도(intensity)와 경향성(tendency)을 제안한다. 주기적 연관규칙이 매 주기마다 정확한 세그먼트에 나타나는 정도를 나타내는 집중도와, 최소 평균오차를 의미하는 경향성을 이용하여 유사한 주기들 중에서 대표주기만을 찾을 수 있도록 한다. 또한, 오차를 허용하는 주기적 연관규칙에서 오차가 주로 발생하는 패턴을 분석함으로써 고객들의 수요 경향성을 더 잘 파악할 수 있다. 예를 들어, 평소에는 매일 오진 7시∼8시에 나타나던 연관성이 지각하는 사람들이 같은 월요일에는 1시간 늦은 8시∼9시에 나타난다는 오타 정보까지 파악할 수 있다. 이러한 월요일마다 1시간 늦게 나타나는 오차의 경향성을 나타내는 오차 주기(error cyc1e)를 이용함으로써 고객들의 수요의 경향성을 좀 더 세밀한 부분까지 파악할 수 있게 해 준다.

  • PDF

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Development of Hedging Rule for Drought Management Policy Reflecting Risk Performance Criteria of Single Reservoir System (단일 저수지의 위험도 평가기준을 고려한 가뭄대비 Hedging Rule 개발)

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.501-510
    • /
    • 2002
  • During drought or impending drought period, the reservoir operation method is required to incorporate demand-management policy rule. The objective of this study is focused to the development of demand reduction rule by incorporating hedging-effect for a single reservoir system. To improve the performance measure of the objective function and constraints, we could incorporate three risk performance criteria proposed by Hashimoto et al. (1982) by mixed-integer programming and also incorporate successive linear programming to overcome nonlinear hedging term from the previous study(Shih et al., 1994). To verify this model, this hedging rule was applied to the Daechung multi-purpose dam. As a result, we could evaluate optimal hedging parameters and monthly trigger volumes.

Association Rule Mining Algorithm and Analysis of Missing Values

  • Lee, Jae-Wan;Bobby D. Gerardo;Kim, Gui-Tae;Jeong, Jin-Seob
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • This paper explored the use of an algorithm for the data mining and method in handling missing data which had generated enhanced association patterns observed using the data illustrated here. The evaluations showed that more association patterns are generated in the second analysis which suggests more meaningful rules than in the first situation. It showed that the model offer more precise and important association rules that is more valuable when applied for business decision making. With the discovery of accurate association rules or business patterns, strategies could be efficiently planned out and implemented to improve marketing schemes. This investigation gives rise to a number of interesting issues that could be explored further like the effect of outliers and missing data for detecting fraud and devious database entries.