• 제목/요약/키워드: association Rule

검색결과 1,232건 처리시간 0.024초

A Study for Antecedent Association Rules

  • 조광현;박희창
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.51-57
    • /
    • 2006
  • Association rule mining searches for interesting relationships among Items in a given database. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule support and confidence and lift. In this paper we present association rule mining based antecedent variables. We call these rules to antecedent association rules. An antecedent variable is a variable that occurs before the independent variable and the dependent variable. For example, in politics, a special interest group may want to support a politician who backs their cause. The group would look for a candidate who supports their views and support his election. Once in office, the politician would then conduct policy that supports the interest group.

  • PDF

음의 연관성 규칙 생성을 위한 음의 기여 순수 신뢰도의 제안 (Negatively attributable and pure confidence for generation of negative association rules)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권5호
    • /
    • pp.939-948
    • /
    • 2012
  • 데이터 마이닝 기법들 중에서 가장 많이 활용되고 있는 연관성 규칙은 방대한 데이터베이스에서 항목간의 관계를 흥미도 측도에 의해 명확히 수치화함으로써 그들간의 관련성을 표시해주는 기법이다. 양의 연관성 규칙 마이닝이 임의의 한 항목이 발생하면 다른 항목도 발생한다는 규칙을 생성하기 위한 기법인 반면에, 음의 연관성 규칙은 어느 항목이 발생하면 다른 항목은 발생하지 않는다는 규칙을 찾아내는 기법이다. 음의 연관성 규칙은 양의 연관성 규칙의 활용과 마찬가지로 고객의 구매 경향 및 마케팅 정책을 제시할 수 있고 교차판매와 매장 진열 등과 같이 타겟 마케팅에 활용 가능하다. 양의 연관성 규칙에 음의 연관성 규칙을 추가하게 되면 어떤 제품을 판매하기 위해서는 그 제품만 마케팅 하는 것뿐만 아니라 더 나아가 그 제품이 아닌 어느 제품을 마케팅 하는것이 필요한지를 판단할 수 있다. 본 논문에서는 기존의 음의 신뢰도의 단점을 보완할 수 있는 음의 기여 순수 신뢰도를 제안한 후, 이에 대해 흥미도 측도가 가져야 할 조건들을 조사하였으며, 예제 데이터를 활용하여 음의 기여 순수 신뢰도의 유용성을 고찰하였다.

빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝 (Granule-based Association Rule Mining for Big Data Recommendation System)

  • 박인규
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.67-72
    • /
    • 2021
  • 연관규칙 마이닝은 여러 테이블에 숨겨진 패턴들의 관계를 나타내주는 방법이다. 요즈음에는 연관규칙 마이닝에 보다 세부적인 의미를 추가하기 위하여 과립화 논리를 이용하고 있다. 또한 기존의 데이터를 이용하여 추천하는 기존의 시스템과는 달리 과립화 연관규칙에서는 신규 가입자나 신규상품에 대한 추천의 경우도 가능하다. 따라서 연관규칙의 과립화의 정성적인 크기를 결정하는 것이 추천 시스템의 성능을 좌우한다. 본 논문에서는 관람자가 평가한 영화에 대한 관계를 파악하기 위하여 퍼지논리와 샤논 엔트로피 개념을 이용하여 관람자와 영화데이터에 대한 과립화 방법을 제안한다. 연구는 관람자와 영화간의 연관규칙의 함의에 결정적인 역할을 하는 데이터의 과립화의 크기를 결정하는 부분과 이러한 과립화를 이용하여 관람자와 영화간의 연관규칙을 추출하는 두 번째 부분으로 구성되어 있으며 넷플릭스의 MovieLens데이터를 이용하여 분석하였다. 최종적으로 도출된 연관규칙의 의미와 추천의 정확도 및 고려해야하는 함의를 제시하였다.

죄책감과 청소년의 규칙위반 행위와의 관계 (Relationships between Guilty and Rule violation Acts)

  • 하영희
    • 가정과삶의질연구
    • /
    • 제18권1호
    • /
    • pp.115-126
    • /
    • 2000
  • The purpose of hisstudy was to explore effects of adolescents age sex and parental types on the types guilty and correlations between the Rule violation types and guilty types. A All of 698 middle school students and high school students in Pusan were administered Questionaires. The major findings of this study were as follows: Younger adolescents reported more guilty feelings than older adolescents in all types of guilty. Female adolescents reported more in selfish type guilty than males. Parental induction induced adolescents reported lower rates of violation in all types of rule violation than older adolescents. Male adolescents reported more violation in public related rule violation and property damage rule violation than females. There were negative relation between all guilty types and all Rule violation, These results were discussed and its implication and following study were suggested.

  • PDF

자율적 규칙정하기와 규칙지키기 활동이 유아의 대인문제 해결사고에 미치는 영향 (The Effects of Autonomous Rule-Making and Rule-Keeping Activities on Young Children's Interpersonal Cognitive Problem Solving)

  • 최기영;조부경;우수경
    • 아동학회지
    • /
    • 제21권1호
    • /
    • pp.3-17
    • /
    • 2000
  • This study investigated the effects of autonomous rule-making and rule-keeping activities on young children's interpersonal cognitive problem solving. The 20 five-year-old children in the experimental group participated in 6-step activities for autonomous rule-making and rule-keeping. The interpersonal cognitive problem solving Test was used to measure children's interpersonal cognitive problem solving thinking. The results of the ANCOVA revealed a significant difference between experimental and control groups in children's interpersonal cognitive problem solving thinking but not in alternative solution thinking.

  • PDF

상이한 특성을 갖는 아이템 그룹에 대한 가중 연관 규칙 탐사 (Weighted Association Rule Discovery for Item Groups with Different Properties)

  • 김정자;정희택
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1284-1290
    • /
    • 2004
  • 장바구니 분석에서, 가중 연관 규칙 탐사는 특정 상품에 대한 아이템의 중요도를 반영함으로써 더 많은 이익을 주는 정보를 규칙으로 탐사하였다. 그러나 트랜잭션을 구성하는 아이템들이 한 개 이상의 서로 다른 그룹으로 나누어진다면, 각 그룹의 특성을 반영하는 서로 다른 측정 방법으로 평가되어야 하므로 기존의 가중연관규칙 탐사 방법을 적용할 수가 없다. 본 논문에서는 이를 해결하기 위해서 가중 연관 규칙의 새로운 탐사 방법을 제안하였다. 먼저 각 아이템들은 유사한 특성에 따라 서브 그룹으로 나누고, 아이템 중요도(아이템 가중치)는 서브 그룹에 포함된 아이템들 단위로 계산한다 이때 적용되는 여러 가중 인자들은 아이템의 특성을 반영하는 아이템 그룹별로 재 정의하였다. 제안하는 방법은 네트워크 보안 데이터에 적용하여 위험을 일으키는 요소에 대한 위험 규칙 집합을 생성함으로써 네트워크 위험관리의 정성평가와, 규칙 생성 시 적용된 가중치와 같은 여러 통계인자들에 의해서 위험도를 계산함으로써 정량평가를 가능하게 하였다. 또한 데이터 아이템들이 상이하게 구별될 수 있는 특성을 만족하는 마켓 데이터의 새로운 응용분야에 넓게 적용될 수 있다.

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별 (Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data)

  • 김성찬;송사광;조민희;신수현
    • 한국콘텐츠학회논문지
    • /
    • 제21권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 연구에서는 데이터마이닝(Data Mining) 기법 중 하나인 연관관계분석(Association Rule Mining)을 적용하여 위험화물 선별모델을 구축함으로써 관세위험을 최소화하고자 한다. 이를 위해 관세청 수입신고서 빅데이터를 활용하여 연관관계분석 알고리즘인 어프라이어리 알고리즘(Apriori Algorithm)을 적용하고 공급망 간의 위험정도를 계산한다. 대규모의 수입신고 데이터로부터 해외공급자와 수입업체 간의 세율관련(과세가격, 품목, 중수량 등), 원산지표시 위반 등에 관련한 적발결과 관한 규칙셋(Rule Set)과 이 규칙들의 신뢰도(Confidence)을 확보하여 우범공급망 간의 거래패턴을 예측할 수 있는 선별모델을 구축한다. 총 2년 6개월 치의 수입신고 데이터를 활용하여 5-겹 교차검증(5-fold cross validation)을 수행한 결과 16.6%의 Precision과 33.8%의 Recall을 보였다. 이는 빈도기반 방법보다 Precision 기준 약 3.4배 Recall 기준 약 1.5배 높은 결과이다. 이로써 논문에서 제안하고 있는 방법이 관세위험을 줄일 수 있는 효과적인 방법임을 확인하였다.

사전정보 활용을 위한 관련 규칙 기반의 Ensemble 클러스터링 (Association-rule based ensemble clustering for adopting a prior knowledge)

  • 고송;김대원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • 본 논문은 클러스터링 문제에서 사전 정보에 대한 활용의 효율을 개선시킬 수 있는 방법을 제안한다. 클러스터링에서 사전 정보의 존재 시 이의 활용은 성능을 개선시킬 수 있는 계기가 될 수 있으므로 그의 활용 폭을 늘리기 위한 방법으로 다양한 사용 방법의 적용인 semi-supervised 클러스터링 앙상블을 제안한다. 사전 정보의 활용 방법의 방안으로써 association-rule의 개념을 접목하였다. 클러스터 수를 다르게 적용하더라도 패턴간의 유사도가 높으면 같은 그룹에 속할 확률은 높아진다. 다양한 초기화에 따른 클러스터의 동작은 사전 정보의 활용을 다양화 시키게 되며, 사전 정보에 충족하는 각각의 클러스터 결과를 제시한다. 결과를 총 취합하여 association-matrix를 형성하면 패턴간의 유사도를 얻을 수 있으며 결국 association-matrix를 통해 클러스터링 할 수 있는 방법을 제시한다.

  • PDF