연관규칙 탐사는 지지도와 신뢰도를 바탕으로 연관성 있는 강한 항목들을 탐사한다. 탐사된 연관규칙은 장바구니 분석 등과 같이 전자 상거래 및 대형 소매점 등의 판매 패턴에 대한 분석에 유용하게 적용될 수 있다. 이와 같은 연관규칙 탐사는 대규모로 축적되어 트랜잭션 데이터를 대상으로 하는 기법으로서 대규모 데이터에 대한 반복적 스캔연산을 수반한다. 그러므로 매우 높은 연산 부하를 안고 있으며 이로 인해 동적 환경에서 실시간 제한사항을 탐사에 대한 시도를 하지 못하고 있다. 따라서 이 논문에서는 연관규칙 탐사의 비 실시간적 제한사항을 위하여 트리거와 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제안하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제한하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 연산의 구현 모델을 제시하고 이의 구현 및 실험을 통해 성능 특성을 분석하였다.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1147-1154
/
2010
데이터 마이닝의 중요 목표 중의 하나는 여러 변수들 간의 관계를 발견하고 결정하는 것이다. 이를 위해 필요한 기법인 연관성 규칙은 각 항목들 간의 관련성을 찾아내는 데 활용되며, 지지도, 신뢰도, 향상도 등의 연관성 측도를 기반으로 두 항목간의 관계를 수치화함으로써 의미 있는 규칙을 찾아 낸다. 본 논문에서는 수익성이 가장 높은 고객을 찾기 위해 고객 정보를 이용하는 기법으로 가장 널리 사용되어온 방법인 알에프엠 기법을 항목에 적용하여 항목의 알에프엠 점수를 항목의 중요도로 고려하여 가중 연관성 규칙의 평가기준을 제시하였다. 모의실험에서는 일반적인 연관성 규칙과 알에프엠 점수를 가중치로 한 가중 연관성 규칙의 유용성을 비교하였다.
A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.
최근 공간 정보들을 효과적으로 이용할 수 있는 기술에 대한 연구가 활발하게 이루어지고 있다. 효율적인 지식 탐사를 위해 다양한 기존의 데이터 마이닝 방법들이 확장되어 공간 데이터 마이닝에 사용되고 있다. 그러나 기존의 공간 연관 규칙 탐사 시스템들은 프레디킷 간의 연산을 통해 규칙을 발견함에 따라 질의 결과에 다양한 비공간 속성들을 반영하지 못하는 문제점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 공간 데이터베이스에서 사용되는 질의를 확장하고, 위상정보에 따른 데이터를 구성한 후 비공간 객체 속성간의 연관 규칙을 발견하는 시스템을 제안한다. 특히 지리 정보 시스템에 적용 가능한 모델을 구현하였다. 이렇게 구현된 시스템은 사용 중인 공간 데이터베이스를 확장하므로 이식성이 뛰어나고, 공간 속성뿐만 아니라 다양한 비공간 속성을 고려함으로써 좀 더 실생활에 유용한 공간 연관 규칙을 발견할 수 있다.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.353-362
/
2016
데이터 마이닝은 빅 데이터에 내재되어 있는 새로운 법칙이나 잠재되어 있는 지식을 탐색한 후, 이를 근거로 하여 의사결정에 활용하고자 하는 것이다. 위키 백과사전에 의하면 데이터 마이닝 기법 중의 하나인 연관성 규칙은 연관성 평가 기준에 의해 관심 있는 항목들 간에 관련성을 찾아내는 기법으로 많은 연구자들에 의해 연관성 평가를 위한 흥미도 측도들이 개발되어 왔다. 이들 중에서 헬링거 측도는 여러 가지 흥미도 측도들에 비해 많은 장점이 있으나 연관성의 방향을 판단하기가 곤란한 문제를 내포하고 있다. 이 문제를 해결하기 위해 본 논문에서는 부호를 가지는 헬링거 측도를 제안하고 몇 가지 예제를 통하여 유용성을 고찰하였다. 그 결과, 본 논문에서 제안하는 부호 헬링거 측도는 양의 연관성을 가지는 경우에는 양의 값으로 나타나고 음의 연관성을 가지는 경우에는 음의 값을 갖는 것으로 나타났다. 또한 동시발생빈도, 동시 비 발생빈도, 그리고 불일치 빈도가 증가함에 따라 기본적인 연관성 평가 기준들과 부호 헬링거 측도는 증감 여부가 동일한 것을 알 수 있었다.
If is interested and create rule between it in item that association rules buys, by negative association rules is interested to item that do not buy, it is attempt to do data Maining more effectively. It is difficult that existent methods to find negative association rules find one part of rule, or negative association rules because use more complicated algorithm than algorithm that find association rules. Therefore, this paper presents method to create negative association rules by simpler process using Boolean Analyzer that use dependency between items. And as Boolean Analyzer through an experiment, show that can find negative association rules and more various rule through comparison with other algorithm.
본 연구의 목적은 합리적인 Trigger Rule에 따른 최적의 서비스 수준을 제시할 수 있는 인천항의 시설확보율의 검토를 통해 향후 인천신항의 시기적절한 항만개발을 위한 여건을 조성함과 아울러 향후 우리나라에서 인천항의 위상확보와 역할방향에 대해 정책적 제언을 제시하는 것을 목적으로 하였다. 연구결과에 따르면 국토부 예측치 보다 2001~2009년 까지의 연평균 증가율을 이용하여 트리거룰을 적용한 경우 2년 앞당겨 2021년까지 18개 선석 조기완공이 가능할 것으로 나타났으며 이를 위해 인천신항을 포함한 3포트 정책, 고부가가치 환적화물 유치, 인천신항 조기 완공 여건 조성 등을 제언하였다.
일반적인 빈발패턴 탐사 방법은 항목의 빈발도만을 고려한다. 그러나 유용한 정보를 추출하는 데 있어 빈발도와 더불어 고려해야 하는 것은 빈발항목이 아니더라도 연관된 항목이 주기적으로 함께 발생한다면 시기나 시간에 따라 관심의 중요도가 변화하는 것을 고려해야 한다. 즉, 시간에 따라 사용자가 요구하는 서비스의 중요도는 다르므로 각 서비스 항목에 대한 중요도의 값을 고려하여 마이닝 하는 방법이 필요하다. 본 논문에서는 서비스 온톨로지 기반으로 가중치를 이용한 서비스 빈발 패턴을 추출하는 마이닝 기법을 제안한다. 제안하는 기법은 시공간 상황을 기반으로 서비스의 중요도를 고려한 가중치를 부여하여 연관 서비스를 발견한다. 새롭게 탐사되는 서비스는 저장되어 있는 서비스 규칙과의 새로운 조합을 통해 사용자에게 최적의 서비스 정보를 제공할 수 있는 기반이 된다.
In this paper we introduce the Internet-based purchase support systems using data mining and case-based reasoning (CBR). Internet Business activity that involves the end user is undergoing a significant revolution. The ability to track users browsing behavior has brought the vendor and end customer's closer than ever before. It is now possible for a vendor to personalize his product message for individual customers at massive scale. Most of former researchers, in this research arena, used data mining techniques to pursue the customer's future behavior and to improve the frequency of repurchase. The area of data mining can be defined as efficiently discovering association rules from large collections of data. However, the basic association rule-based data mining technique was not flexible. If there were no inference rules to track the customer's future behavior, association rule-based data mining systems may not present more information. To resolve this problem, we combined association rule-based data mining with CBR mechanism. CBR is used in reasoning for customer's preference searching and training through the cases. Data mining and CBR-based hybrid purchase support mechanism can reflect both association rule-based logical inference and case-based information reuse. A Web-log data gathered in the real-world Internet shopping mall is given to illustrate the quality of the proposed systems.
본 연구는 수계관리 측면에서 물 공급의 기준이 되는 하류 제어지점에서 발생할 수 있는 물 부족을 최소 허용하면서 저수지군 최적 운영방안을 제공할 수 있도록 위험도 평가기준을 목적함수 및 제약조건에 반영한 hedging rule을 혼합정수계획법(MIP, Mixed Integer Programming)으로 구성하고 이에 대한 이행도를 분석함으로써 기존의 용수공급 신뢰도에 중점을 두었던 저수지군 최적 운영 분석기법을 개선하고자 하였다. 이를 위해 한강수계 5개 저수지(소양강댐, 충주댐, 화천댐, 청평댐, 팔당댐)군을 대상으로 수계관리를 위한 모형을 구축하였으며, 한강수계 내에 총 8개의 가상 제어지점을 구성하여 댐 하류 제어지점에서의 물 부족에 대해 위험도를 평가하였으며, 개발된 hedging rule의 적정성을 검증하기 위하여 2개의 유입량 계열('93. 1월~'97. 12월, '99. 1월~'03. 12월)에 대하여 적용 검토하였다. 팔당댐 하류 제어지점의 월별 최소유량을 비교하면 '93. 1월~'97. 12월의 모의기간에서는 hedging rule 적용 시 $317.5{\times}10^6m^3$으로 단독운영의 $310.6{\times}10^6m^3$, 연계운영의 $56.3{\times}10^6m^3$ 보다 많은 유량을 보였으며, '99. 1월~'03. 12월의모의기간에서도 hedging rule 적용시 $243.7{\times}10^6m^3$ 으로 단독운영의 $204.2{\times}10^6m^3$, 연계운영의 $111.2{\times}10^6m^3$에 비해 최소 유량이 많은 것을 확인하였으며, 이는 제안한 hedging rule에 의해 하류 제어지점에서의 최대 물 부족량이 감소하는 결과를 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.