• Title/Summary/Keyword: assessment of codes

Search Result 261, Processing Time 0.023 seconds

Safety factor calibration for bridge concrete girders

  • Silva, Rita C.;Cremona, Christian
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.163-182
    • /
    • 2014
  • Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

Investigation on the Studies for Welding Residual Stresses in Nuclear Components (원전 기기 용접 잔류응력 평가 연구 고찰)

  • Kim, Jong Sung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

Earthquake induced torsion in buildings: critical review and state of the art

  • Anagnostopoulos, S.A.;Kyrkos, M.T.;Stathopoulos, K.G.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.305-377
    • /
    • 2015
  • The problem of earthquake induced torsion in buildings is quite old and although it has received a lot of attention in the past several decades, it is still open. This is evident not only from the variability of the pertinent provisions in various modern codes but also from conflicting results debated in the literature. Most of the conducted research on this problem has been based on very simplified, highly idealized models of eccentric one-story systems, with single or double eccentricity and with load bearing elements of the shear beam type, sized only for earthquake action. Initially, elastic models were used but were gradually replaced by inelastic models, since building response under design level earthquakes is expected to be inelastic. Code provisions till today have been based mostly on results from one-story inelastic models or on results from elastic multistory idealizations. In the past decade, however, more accurate multi story inelastic building response has been studied using the well-known and far more accurate plastic hinge model for flexural members. On the basis of such research some interesting conclusions have been drawn, revising older views about the inelastic response of buildings based on one-story simplified model results. The present paper traces these developments and presents new findings that can explain long lasting controversies in this area and at the same time may raise questions about the adequacy of code provisions based on results from questionable models. To organize this review better it was necessary to group the various publications into a number of subtopics and within each subtopic to separate them into smaller groups according to the basic assumptions and/or limitations used. Capacity assessment of irregular buildings and new technologies to control torsional motion have also been included.

Damage assessment of buildings after 24 January 2020 Elazığ-Sivrice earthquake

  • Nemutlu, Omer Faruk;Balun, Bilal;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2021
  • The majority of Turkey's geography is at risk of earthquakes. Within the borders of Turkey, including the two major active faults contain the North-Eastern and Eastern Anatolia, earthquake, threatening the safety of life and property. On January 24, 2020, an earthquake of magnitude 6.8 occurred at 8:55 p.m. local time. According to the data obtained from the stations in the region, peak ground acceleration in the east-west direction was measured as 0.292 g from the 2308 coded station in Sivrice. It is thought that the earthquake with a magnitude of Mw 6.8 was developed on the Sivrice-Puturge segment of the Eastern Anatolian Fault, which is a left lateral strike slip fault, and the tear developed in an area of 50-55 km. Aftershocks ranging from 0.8 to 5.1 Mw occurred following the main shock on the Eastern Anatolian Fault. The earthquake caused severe structural damages in Elazığ and neighboring provinces. As a result of the field investigations carried out in this study, significant damage levels were observed in the buildings since it did not meet the criteria in the earthquake codes. Within the study's scope, the structural damage cases in reinforced concrete and masonry structures were investigated. Many structural deficiencies and mistakes such as non-ductile details, poor concrete quality, short columns, strong beams-weak columns mechanism, large and heavy overhangs, masonry building damages and inadequate reinforcement arrangements were observed. Requirements of seismic codes are discussed and compared with observed earthquake damage.

Construction of an Effective Web-based Change Management System (웹 기반의 효과적인 변경관리 시스템 구축)

  • Yoo Jae-Soo;Cho Chang-Hee;Lee Byoung-Yup
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.11-19
    • /
    • 2005
  • With the development of IT technologies, IT environment is making great change over life whole and is displacing business and business achievement systems of industry at the fast speed. The system which is proposed in this paper, supports environments to share codes, execution files and objects between project teams to maximize productivity and efficiency in web environments. Through impact assessment which is achieved at correction and development of existing programming codes by maintenance requirements, it minimizes obstacle occurrence factors and supports tracing obstacle sources. Through conversion the correction and development histories of existing sources and executable files between project teams to XML documents suitable to share in web, it stores them to relational database. In this paper, through impact assessment and change management for the correction and development of applications in the existing system development environments, we support efficient IT developments.

  • PDF

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.