• 제목/요약/키워드: assessment damage cause

검색결과 186건 처리시간 0.027초

Opendata 기반 포항 및 경주지진에 의한 건물손상 평가 (Earthquake Damage Assessment of Buildings Using Opendata in the Pohang and the Gyeongju Earthquakes)

  • 임승현;양범주;전해민
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.121-128
    • /
    • 2018
  • Severe earthquakes can cause damage to society both socially and economically. An appropriate initial response can alleviate damage from severe earthquakes. In order to formulate an appropriate initial response, it is necessary to identify damage situations in societies; however, it is difficult to grasp this information immediately after an earthquake event. In this study, an earthquake damage assessment methodology for buildings is proposed for estimating damage situations immediately after severe earthquakes. A response spectrum database is constructed to provide response spectra at arbitrary locations from earthquake measurements immediately after the event. The fragility curves are used to estimate the damage of the buildings. Earthquake damage assessment is performed from the response spectrum database at the building scale to provide enhanced damage condition information. Earthquake damage assessment for Gyeongju city and Pohang city were conducted using the proposed methodology, when an earthquake occurred on September 12, 2016, and November 15, 2017. Results confirm that the proposed earthquake damage assessment effectively represented the earthquake damage situation in the city to decide on an appropriate initial response by providing detailed information at the building scale.

국내외 터널구조물의 변상에 관한 조사 및 분석 (Study on Investigation and Analysis about Damage of Tunnels)

  • 배규진;이성원;조만섭;이광호
    • 한국터널지하공간학회 논문집
    • /
    • 제3권3호
    • /
    • pp.31-43
    • /
    • 2001
  • 본 연구에서는 안전진단에 관한 기본적 정보를 제공하고 유사한 변상의 발생을 최소화하기 위한 목적으로 터널의 변상사례들에 대한 조사와 분석을 수행하였다. 국내외 터널의 44개 변상사례에 대하여 4개 항목 즉, 내용수명, 변상유형 및 원인, 지질상태 등에 관한 빈도 수를 분석하였다. 이와 더불어 국내 터널분야의 전문가들로부터 안전진단 평가에 관련하여 총 28개 항목에 대한 설문조사를 수행하였다. 본 연구의 결과는 터널의 변상항목 중에는 균열에 의한 변상이 42~58% 정도로 가장 높은 비율을 나타났다. 변상 원인으로는 시공불량에 의한 영향이 높은 비율을 나타내고 있으므로 시공품질의 확보가 중요한 요인으로 사료된다. 설문조사 결과로부터 경직된 평가기준의 완화를 지적하였다. 그리고 각 항목별 중요도를 제시함으로써 인공지능기법 등을 안전진단분야에 적용하기 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

A Case Study on the Assessment of Damaged Cause for the Damaged Reinforced Concrete Pier

  • Chai, Won-Kyu;Kim, Kwang-Il;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제10권1호
    • /
    • pp.16-21
    • /
    • 2011
  • In this thesis, appearance inspection, compressive strength of concrete test, arrangement of bar inspection, survey, and bearing stress analysis were performed on a damaged coping of reinforced concrete pier to investigate the damage cause. According to the performed a series of inspections, it was found that the coping of pier was damaged during PSC (Pre-stressed Concrete) beam construction. In this thesis, the repair method for damaged pier was studied. The repair procedure used in this thesis was follows : chipping for damaged part, clean by high-pressure, installation of wire mesh, coating of surface hardening, construction of section restoration material, copula grinding, and prevent coating for far-infrared radiation.

  • PDF

Estimating Worst Case Flood and Inundation Damages under Climate Change

  • Kim, Sunmin;Tachikawa, Yasuto;Nakakita, Eiichi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.189-189
    • /
    • 2016
  • To generate information that contributes to climate change risk management, it is important to perform a precise assessment on the impact in diverse aspects. Considering this academic necessity, Japanese government launched continuous research project for the climate change impact assessment, and one of the representative project is Program for Risk Information on Climate Change (Sousei Program), Theme D; Precise Impact Assessment on Climate Change (FY2012 ~ FY2016). In this research program, quantitative impact assessments have been doing from a variety of perspectives including natural hazards, water resources, and ecosystems and biodiversity. Especially for the natural hazards aspect, a comprehensive impact assessment has been carried out with the worst-case scenario of typhoons, which cause the most serious weather-related damage in Japan, concerning the frequency and scale of the typhoons as well as accompanying disasters by heavy rainfall, strong winds, high tides, high waves, and landslides. In this presentation, a framework of comprehensive impact assessment with the worst-case scenario under the climate change condition is introduced based on a case study of Theme D in Sousei program There are approx. 25 typhoons annually and around 10 of those approach or make landfall in Japan. The number of typhoons may not change increase in the future, but it is known that a small alteration in the path of a typhoon can have an extremely large impact on the amount of rain and wind Japan receives, and as a result, cause immense damage. Specifically, it is important to assess the impact of a complex disaster including precipitation, strong winds, river overflows, and high tide inundation, simulating how different the damage of Isewan Typhoon (T5915) in 1959 would have been if the typhoon had taken a different path, or how powerful or how much damage it would cause if Isewan Typhoon occurs again in the future when the sea surface water temperature has risen due to climate changes (Pseudo global warming experiment). The research group also predict and assess how the frequency of "100-years return period" disasters and worst-case damage will change in the coming century. As a final goal in this research activity, the natural disaster impact assessment will extend not only Japan but also major rivers in Southeast Asia, with a special focus on floods and inundations.

  • PDF

태양광단지의 산지입지에 따른 환경성평가 및 환경친화적 개발 방안 (Environmental Assessment and Environment-Friendly Development in Mountainous Area in Constructing Photovoltaic Complex)

  • 안세웅;주현수;이희선
    • 환경영향평가
    • /
    • 제20권2호
    • /
    • pp.141-150
    • /
    • 2011
  • The construction of photovoltaic complex in mountainous area is quickly increasing recently so that the environment assessment in constructing photovoltain complex in mountainous area was performed by comparison of $CO_{2{\cdot}}$ reduction and forest damage. The case studies for environmental value assessment, which construct photovoltaic complex in mountainous area, show that the losses of around 5.1billion won arise during 15 years. The government's official target for spreading photovoltaic energy until year 2030 can be satisfied when considering other alternative sites, improvement of technology and the alternative sites of an idle space of a building or a disused site, etc, except an undeveloped mountainous area. The construction of photovoltaic complex in mountainous area can cause the great damage to the environment, especially undeveloped mountainous area such as Baekdudaegan, and this defeat its own purpose of using photovoltaic energy. Therefore, the spread of photovoltaic complex through the additional damage of forest should be sublated.

Drug-Induced Nephrotoxicity and Its Biomarkers

  • Kim, Sun-Young;Moon, A-Ree
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.268-272
    • /
    • 2012
  • Nephrotoxicity occurs when kidney-specific detoxification and excretion do not work properly due to the damage or destruction of kidney function by exogenous or endogenous toxicants. Exposure to drugs often results in toxicity in kidney which represents the major control system maintaining homeostasis of body and thus is especially susceptible to xenobiotics. Understanding the toxic mechanisms for nephrotoxicity provides useful information on the development of drugs with therapeutic benefits with reduced side effects. Mechanisms for drug-induced nephrotoxicity include changes in glomerular hemodynamics, tubular cell toxicity, inflammation, crystal nephropathy, rhabdomyolysis, and thrombotic microangiopathy. Biomarkers have been identified for the assessment of nephrotoxicity. The discovery and development of novel biomarkers that can diagnose kidney damage earlier and more accurately are needed for effective prevention of drug-induced nephrotoxicity. Although some of them fail to confer specificity and sensitivity, several promising candidates of biomarkers were recently proved for assessment of nephrotoxicity. In this review, we summarize mechanisms of drug-induced nephrotoxicity and present the list of drugs that cause nephrotoxicity and biomarkers that can be used for early assessment of nephrotoxicity.

중앙선 전철/전력분야 위험도 평가 연구 (A study on Risk Assessment for Electric Railway on Choongang Line)

  • 이기원;김주락;장동욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1419-1424
    • /
    • 2004
  • Railway safety is based on a risk analysis and safety assessment for the whole railway system as human, train, electric, signaling, operation, maintenance and etc. Therefore in this study, after investigating the accidents happened in electric railway on Choongang line for 5 years, from '97 to '01, a Data-Base was made through a cause and result analysis. In consideration of economic loss and human resources damage, a risk assessment for electric railway was also performed.

  • PDF

토지피복지도 변화지역 추출을 통한 훼손 유형분류에 관한 연구 (Classification of the Types of Damage by Extracting the Changed Areas on Land Cover Maps)

  • 서정영
    • 한국환경과학회지
    • /
    • 제29권5호
    • /
    • pp.551-558
    • /
    • 2020
  • This study aims to increase the ability to adapt to the ecosystem and promote a sustainable use of the natural environment, by classifying the types of damaged lands according to various factors, such as the characteristics of the target area and form, cause, and impact of damage. Moreover, the study suggests the development of evaluation categories and criteria by each type. The results obtained are as follows: first, for the assessment of damaged lands, the changed areas were identified utilizing land cover maps. Video analysis was performed to increase the accuracy, and 88 sites were obtained. Second, the types of damage were classified into ecological infrastructure and ecological environment, and the sub-factors of the cause of damage were classified into 12 factors. Third, each evaluation system for the types of damage was composed of four steps, considering each type of damage and the level of evaluators being higher than paraprofessionals. To supplement this study, it will be necessary to utilize the database of damaged lands other than the Seoul Metropolitan Area and conduct an on-site survey for verification in the future.

슬래브교 상판의 전문가 시스템 개발 (Development of the Expert System for Management on Slab Bridge Decks)

  • 안영기;이증빈;임정순;이진완
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.267-277
    • /
    • 2003
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.

지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석 (Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load)

  • 오병환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF