• Title/Summary/Keyword: assembly performance evaluation

Search Result 157, Processing Time 0.026 seconds

An Ergonomic Shape Design for Automotive Push-Return Switches

  • Choi, Daewon;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.9-21
    • /
    • 2017
  • Objective: The objective of this study is to understand the effect of angle and curvature of push-return switches, which are external factors in the operation environment inside the cars, on the feel of operation and to propose optimum alternatives. Background: Customers' needs for products are changing from functional and performance aspects to customer-led type where customers can reflect on their needs on the products. The operation inside cars is executed by HMI. The push-return switch is utilized as the most intuitive mode of HMI; therefore, this push-return switch, which is widely used, has to be developed by assessing the preference and satisfaction of the customer. Method: The angle and curvatures, which are external factors that affect the feel of operation, are drawn through surveying the preceding research literatures. The stages to construct alternatives in experiments are as follows: (1) the tactile switch is replaced after dismantling the switch assembly to evaluate the internal characteristics proposed by preceding researches, (2) a drawing is prepared by using a design software, is printed using 3D printer, and then it is attached on the switch assembly, and (3) evaluation for satisfaction of operation is carried out by using a driving simulator. Results: Both the angle and curvature that are external factors of switch significantly affect the feel of operation. However, interaction between the two factors is found insignificant. Therefore, an optimum alternative is proposed considering the experimental outcomes. Conclusion: This study evaluates the satisfaction in operation that affects the feel of operation environment inside the cars. Based on the study results, a guideline for switch design in the center fascia is proposed. Application: This study is expected to be used as basic data for designing automotive switches, as well as switches in the industries similar with the operation environments of cars.

An Evaluation of Nuclear Design Characteristics of Duplex Burnable Absorber Rods (이중구조 가연성 독봉의 핵설계 특성 평가)

  • 이대진;김명현;송근우;정연호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • Nuclear design characteristics of duplex burnable poison rod were evaluated based on 24 month cycle fuel for Korean Standard Nuclear Plant. A fuel assembly with duplex burnable poison rod was designed for an equivalent assembly to 16 gadolinia BPs. Duplex BP is composed of inner region of natural U-12wt%Gd$_2$O$_3$ and outer shell of 4.95wt%UO$_2$-2wt%Er$_2$O$_3$. In order to compare this duplex option, assemblies with 140 erbia pins were designed as an alternative option. The variation of k-infinitive, rod worth, pin peaking and MTC were compared. Duplex BP had the better neutronic performance than gadolinia BP in all parameters. However, Duplex BP was worse than erbia BP in the aspect of safety.

  • PDF

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Study on the Short Resistance and Shorting of Membrane of PEMFC (PEMFC 고분자 막의 Short 저항 및 Shorting에 관한 연구)

  • Oh, Sohyeong;Gwon, Jonghyeok;Lim, Daehyeon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The shorting resistance (SR) of the PEMFC(Proton Exchange Membrane Fuel Cell) polymer membrane is an important indicator of the durability of the membrane. When SR decreases, shorting current (SC) increases, reducing durability and performance. When SR becomes less than about 0.1 kΩ·㎠, shorting occurs, the temperature rises rapidly, and MEA(Membrane Electrode Assembly) is burned to end stack operation. In order to prevent shorting, we need to control the SR, so the conditions affecting the SR were studied. There were differences in the SR measurement methods, and the SR measurement method, which improved the DOE(Department of Energy) and NEDO(New Energy and Industrial Technology Development Organization) method, was presented. It was confirmed that the SR decreases as the relative humidity, temperature and cell compression pressure increase. In the final stage of the accelerated durability evaluation process of the polymer membrane, SR rapidly decreased to less than 0.1 kΩ·㎠, and the hydrogen permeability became higher than 15 mA/㎠. After dismantling the MEA, SEM(Scanning Electron Microscope) analysis showed that a lot of platinum was distributed inside the membrane.

Durability Evaluation of Air-Cooled Proton Exchange Membrane Fuel Cells Stacks by Repeated Start-Up/Shut-Down (시동/정지반복에 의한 공랭식 고분자연료전지 스택 내구성 평가)

  • YOO, DONGGEUN;KIM, HYEONSUCK;OH, SOHYEONG;PARK, KWON-PIL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • The air-cooled proton exchange membrane fuel cells (PEMFC) stacks, which is widely used in small-sized PEMFC, have a problem in that durability is weaker than that of the water-cooled type. Because the cathode is open to the atmosphere and the structural problem of the air-cooled stack, which is difficult to maintain airtightness, is highly likely to form a hydrogen/air boundary during start-up/shut-down (SU/SD). Through the accelerated durability evaluation of the 20 W air-cooled PEMFC stack, the purpose of this study was to find out the cause of the degradation of the stack and to contribute to the improvement of the durability of the air-cooled PEMFC stack. In this study, it was possible to evaluate durability in a relatively short time by reducing 20-30% of initial performance by repeating SU/SD 1,000 to 1,200 times on an air-cooled PEMFC stack. After disassembling the stack, each cell was divided into two and the performance analysis showed that the electrode degradation was more severe in the anode outlet membrane electrode assembly (MEA), which facilitates air inflow as a whole, than in the inlet MEA. It was shown that the cathode Pt was dissolved/precipitated to deteriorate the polymer ionomer inside the membrane.

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.

Optimization of 30 cm Lightweight Mirror (30 cm 급 반사경 경량화 최적 설계)

  • Kim, Bong-Ho;Lee, Jong-Ung;Moon, Il-Kwon;Yang, Ho-Soon;Kihm, Hag-Yong;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.214-223
    • /
    • 2010
  • Optimization of a 30 cm lightweight mirror was proposed with the best optical performance under various loads of gravity and thermal loads with proper boundary conditions. A pattern for a lightweight mirror was generated based on the best optical performance combined with ease of manufacturing for proper design parameters of physical properties of face sheet, back sheet, rib, and web. Evaluation of the optical performances of a telescope mirror was obtained by using the finite element analysis program, NX I-DEAS. Surface errors, individual aberration terms, such as piston, tilts, focus and other aberrations were calculated by using Zernike polynomials. The proposed telescope mirror meets well the opto-mechanical design consideration of RMS surface error less than 16 nm.

A Performance Evaluation of a RISC-Based Digital Signal Processor Architecture (RISC 기반 DSP 프로세서 아키텍쳐의 성능 평가)

  • Kang, Ji-Yang;Lee, Jong-Bok;Sung, Won-Yong
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.2
    • /
    • pp.1-13
    • /
    • 1999
  • As the complexity of DSP (Digital Signal Processing) applications increases, the need for new architectures supporting efficient high-level language compilers also grows. By combining several DSP processor specific features, such as single cycle MAC (Multiply-and-ACcumulate), direct memory access, automatic address generation, and hardware looping, with a RISC core having many general purpose registers and orthogonal instructions, a high-performance and compiler-friendly RISC-based DSP processors can be designed. In this study, we develop a code-converter that can exploit these DSP architectural features by post-processing compiler-generated assembly code, and evaluate the performance effects of each feature using seven DSP-kernel benchmarks and a QCELP vocoder program. Finally, we also compare the performances with several existing DSP processors, such as TMS320C3x, TMS320C54x, and TMS320C5x.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

Assessment of Evaluation by Hybrid Waterproof-Roof Barrier Layer for Green System on Artificial Ground (인공지반 녹화시스템 활용을 위한 일체형 방수·방근 시트의 성능평가)

  • Oh, Chang-Won;Hong, Jong-Chul;Park, Ki-Bong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2015
  • The demands about eco friendly space are increased as buildings are denser in downtown, and green system on the roof and the artificial ground are widely being applied. The construction of green system applies a waterproof layer, a root barrier and a protection concrete layer. Assembly of these many layers leads to a long construction term, and cause many defects. This study is to evaluate one layer-hybrid sheet which gets waterproof and root barrier performance simultaneously, which is developed to use in the new green system. As results, the performances of physical properties, durability, waterproof and root barrier not only exceeded quality standards but also showed excellent durability. In addition, mock-up test would be proceed to certify long term performance.