• Title/Summary/Keyword: assembly modeling

Search Result 307, Processing Time 0.023 seconds

CAD System of New Concept to Support Top-Down Approach in Design (하향식 설계방식을 지원하는 새로운 개념의 CAD 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1604-1618
    • /
    • 1995
  • In the process of mechanical assembly design, assembly modeling systems have been used mainly for the design verification before manufacturing by enabling to check the interference and/ or the dynamic and kinematic performance. However, the conventional assembly modeling systems have a shortcoming that they can not be used in the initial design stage but can be used only after the design is fully completed. In other words conventional assembly modeling systems provide bottom-up modeling which means that the detailed modeling of components must precede the definition of relationships between them. To resolve this problem, an assembly modeling system is proposed to provide a top-down modeling environment in which components and assembly can be modeled simultaneously. To this end, an assembly data structure suitable for top-down assembly modeling has been established. Feature positioning Module(FPM) using geometric constraints has been also developed. The Sekective Solving Method proposed for FPM is based on the priority between the constraint equations and enables the designer's intent expressed by geometric constraints to be maintained throughout the whole modeling process. Finally, the feature based modeling technique using two-level features has been developed. Two-level features include an abstract model and a detailed model in a merged form in non-manifold data frame.

An Assembly Modeling System for Dynamic and Kinematic Analysis (동역학 및 기구학적 해석을 위한 조립체 모델링 시스템)

  • 김성환;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.48-58
    • /
    • 1989
  • An assembly modeling system, with which a designer can interactively create an assembly of components ready for the dynamic analysis, has been developed. In this system, an assembly model is created from the mating conditions between the components in the assembly, and then most information required for the dynamic or kinematic analysis packages are derived. For this development, the following problems have been solved; the creation of assembly data structure, the derivation of the joint information, the inference of each component's position, and the creation of the joint coordinate systems. Through this work, the designer can easily model an assembly by assigning mating conditions, and check the dynamic or kinematic performance with the automatic creation of inputs for the assembly analysis packages.

A Feature Based Modeling System for the Design of Welded Plate Construction (용접판 구조물의 설계를 위한 Feature 기반 모델링 시스템)

  • Kim, Dong-Won;Yang, Sung-Mo;Choi, Jin-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.30-41
    • /
    • 1993
  • Developed in this paper is a feature based modeling system for the design of welded plat construction(WPC) which is composed of flat or bended plates represented as reference plane with a constant thickness. First, the necessity and the characteristics of the modeing system for WPC as compared with the assembly of mechanical parts are investigated. Secondly, feature library for the assembly of WPC is shown which contains several types of features like joint feature, groove feature, material feature, and precision feature. Thirdly, the assembly procedures are presented which mainly consist of both the assembly transformation and the correct assembly checking. Fourthly, weld lines of the assembled WPC are defined so that those can be used in the process planning or the manufacturing stage. Finally, a prototype by a geometric modeling software Pro/Engineer, a graphic software GL(Graphic Library), and C language on a CAD workstation IRIS.

  • PDF

Implementation of Concurrent Engineering for Large Assembly Design:Part(I)- Assembly-centric Modeling Methodology as BOM Structrue- (부품수가 많은 조립체 설계를 위한 동시공학의 구현: Part(I)- BOM에 따른 조립체 중심적 모델링 방법론-)

  • 정융호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Most design changes are due to interferences and fit-up as parts are assembled if such a large product as an automobile or an aircraft is developed by many concurrent engineers. In this part (1) of the thesis, the assembly-centric modeling methodology with CAD systems is proposed in order to reduce the design changes. Unlike part-centric modeling method, a part is modeled with its own coordinate system which is used in downstream process as machining and measuring. The part coordinates initially have the same orientation as its assembly which is predefined in BOM (Bill of Material). Then, the corrdinates origin of the part is moved to its location to be assembled from that of its assembly coordinate system. To implement this methodology, the position data of the part w.r.t. its assembly are stored in a database to build the same hierarchical assembling structure as BOM structure. This modeling approach has the advantage of reflecting asembling sequence, because the process of positioning parts is similar to that of real assembling. And with the method, a designer can easily adjust all of the part positions of an assembly to resolve interferences if he modifies just the coordinates origin of the assembly, which results in moving included parts and assemblies together.

  • PDF

Ontology-based Semantic Assembly Modeling for Collaborative Product Design (협업적 제픔 설계를 위한 온톨로지 기반 시맨틱 조립체 모델링)

  • Yang Hyung-Jeong;Kim Kyung-Yun;Kim Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.139-148
    • /
    • 2006
  • In the collaborative product design environment, the communication between designers is important to capture design intents and to share a common view among the different but semantically similar terms. The Semantic Web supports integrated and uniform access to information sources and services as well as intelligent applications by the explicit representation of the semantics buried in ontology. Ontologies provide a source of shared and precisely defined terms that can be used to describe web resources and improve their accessibility to automated processes. Therefore, employing ontologies on assembly modeling makes assembly knowledge accurate and machine interpretable. In this paper, we propose a framework of semantic assembly modeling using ontologies to share design information. An assembly modeling ontology plays as a formal, explicit specification of a shared conceptualization of assembly design modeling. In this paper, implicit assembly constraints are explicitly represented using OWL (Web Ontology Language) and SWRL (Semantic Web Rule Language). The assembly ontology also captures design rationale including joint intent and spatial relationships.

Parametric Modeling Method for 3D Assembly Design of Parts Composing Superstructure Module on Modular Steel Bridge (모듈러 강교량 상부모듈 구성파트의 3차원 조립설계를 위한 파라메트릭 모델링 방법)

  • Lee, Sang Ho;An, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.35-46
    • /
    • 2013
  • A parametric modeling method, one of the core technology of BIM (Building Information Modeling), is proposed for efficient 3D assembly design among components of a superstructure module of modular steel bridge. Assembly system is classified into 3 levels as LoD (Level of Details) for 3D assembly design of the parts. Components forming 3D shape of the parts are identified and defined as parameters, variables depending on parameters, or constants independent of the parameters. Then, spatial assembly rules among the parts are defined according to the assembly system. Positional relations among the identified shape components are defined for mating spatial position and geometrical relations are defined for constraining degree of freedom on X, Y, and Z axis. Finally, a standardized template is designed by applying the rules to 3D based assembly design for the parts of the superstructure module. In addition, applicability of the parametric modeling method is demonstrated by testing the shape variation of the superstructure module according to changing the defined parameters.

Automated Assembly Modeling using Kinematics Constraints (기구학적 구속조건을 이용한 자동 조립 모델링)

  • Kim Jae Seong;Kim Gwang Su
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.272-279
    • /
    • 2002
  • A common task in assembly modeling is the determination of the position and orientation of a set of components by solving the spatial relationships between them. Assembly models could be constructed at various levels of abstraction. They could be classified into component or geometry-level assembly models. The geometry-level assembly design approach using mating constraints such as against and fits is widely used in the commercial modelers, but it may be very tedious in some cases fur designer. In this paper, we propose a new method to construct an assembly model at the component-level by extracting joint mating features from the kinematics constraints specified between components. The assembly model constructed using the proposed method includes hierarchical and relational assembly models, component/sub-assembly positions and degrees of freedom information. The proposed method is more intuitive and natural way of assembly design and it guarantees the topological robustness of assembly modification such as component replacement and modification.

  • PDF

State-Based Behavior Modeling in Software and Systems Engineering

  • Sabah Al-Fedaghi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.21-32
    • /
    • 2023
  • The design of complex man-made systems mostly involves a conceptual modeling phase; therefore, it is important to ensure an appropriate analysis method for these models. A key concept for such analysis is the development of a diagramming technique (e.g., UML) because diagrams can describe entities and processes and emphasize important aspects of the systems being described. The analysis also includes an examination of ontological concepts such as states and events, which are used as a basis for the modeling process. Studying fundamental concepts allows us to understand more deeply the relationship between these concepts and modeling frameworks. In this paper, we critically analyze the classic definition of a state utilizing the Thinging machine (TM) model. States in state machine diagrams are considered the appropriate basis for modeling system behavioral aspects. Despite its wide application in hardware design, the integration of a state machine model into a software system's modeling requirements increased the difficulty of graphical representation (e.g., integration between structural and behavioral diagrams). To understand such a problem, in this paper, we project (create an equivalent representation of) states in TM machines. As a case study, we re-modeled a state machine of an assembly line system in a TM. Additionally, we added possible triggers (transitions) of the given states to the TM representation. The outcome is a complicated picture of assembly line behavior. Therefore, as an alternative solution, we re-modeled the assembly line based solely on the TM. This new model presents a clear contrast between state-based modeling of assembly line behavior and the TM approach. The TM modeling seems more systematic than its counterpart, the state machine, and its notions are well defined. In a TM, states are just compound events. A model of a more complex system than the one in the assembly line has strengthened such a conclusion.

Structural Strength Analysis of Automotive Suspension (자동차 현가장치의 구조 강도 해석)

  • Cho, Jae-Ung;Kwon, Oh-Beom;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • This paper describes the analysis of state when load applies to McPherson strut assembly. Strut assembly except knuckle-arm are created with 3 dimensional modeling program. Stress and structural strength on this model are analyzed by analysis program as load applies on the lower part of assembly modeling. When McPherson suspension is applied with 3000N at Z direction, maximum stress at spring becomes 433MPa and the cycle of minimum life is 4321. The designed modeling suspension at this study has no possibility with resonance.

Virtual Manufacturing for an Automotive Company(V) - Parametric Modeling of the Digital General Assembly Shop using Object-Oriented Methods (자동차 가상생산 기술 적용(V) - 객체지향 방법에 의한 디지털 조립공장의 파라메트릭 모델링)

  • Park, Tae-Keun;Kim, Gun-Yeon;Noh, Sang-Do;Park, Young-Jin
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.94-103
    • /
    • 2005
  • Digital Manufacturing is a technology to facilitate effective product developments and agile productions by digital environments representing the physical and logical schema and the behavior of real manufacturing system including manufacturing resources, processes and products. A digital factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital factory of an automotive company’ general assembly shop by measuring and 3-D CAD modeling using parametric methods. Specific parameters of each objects were decided by object-oriented schema of the general assembly shop. It is expected that this method is very useful for constructions of a digital factory, and helps to manage diverse information and re-use 3D models.