• Title/Summary/Keyword: assembly block

Search Result 274, Processing Time 0.029 seconds

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.

A Study on the Implementation of Coexistent Reality Technology for Ship Outfitting Inspection (선박 의장 검사를 위한 공존현실 기술 적용에 관한 연구)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Shin, Hyun-Shil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • In shipyards, internal materials are assembled after designing and manufacturing each ship's block. Internal material assembly means the installation of parts and equipment except ship's body. In this process, if the assembly of pipes and equipment existing in the block is not done correctly during the assembly between blocks, this causes a lot of costs. In addition, even if the assembly of the internal materials already completed, the production efficiency of the ship is reduced due to rework when problems such as space arrangement of the internal materials occurs. Therefore, this study introduces space arrangement and inspection system before and after hull outfitting work based on coexistence reality technology using 3D design drawing to solve these problems. The various coexistence reality algorithms and inspection systems developed and introduced in this study are based on AR service, which has never been introduced in Korea. So it will be widely applicable to various manufacturing industries using design drawings such as automobiles and architectures as well as ship building process.

LCST-type Self-Assembly Behavior in Block Copolymer Melts (LCST형 자기 집합 현상을 발현하는 블록 공중합체의 상 거동)

  • 이병묵;김옥선;이혜은;조준한
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.351-351
    • /
    • 2002
  • 새로운 LCST 형 블록 공중합체를 설계하기 위하여 LCST 블렌드 계를 선정하고, 이로부터 대응되는 블록 공중합체를 고안하였다 고안된 블록 공중합체의 분자 변수와 자기 집합에 의한 나노 미세 상 발현 거동과의 관계를 Cho의 압축성 random-phase approximation (RPA) 이론을 이용하여 구하였다. 본 연구의 대상 물질은 polystyrene (PS)과 poly(vinyl methyl ether) (PVME), PS 와 Poly(cyclo hexyl methacrylate) (PCHMA)의 블록 공중합체이다. (중략)

  • PDF

Self-Assembly of Block Copolymer Micelles (블록공증합체 마이셀 자기조립체)

  • 유성일;윤상현;손병혁
    • Polymer Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.327-333
    • /
    • 2004
  • 블록공중합체를 한 블록에 대해서만 선택적인 용매에 용해시키면 자발적인 상분리에 의하여 크기가 50 nm에서 200 nm 정도인 마이셀 구조로 자기 조립되며, 그 크기와 형태는 벌크상에서와 마찬가지로 블록공중합체의 분자량, 각 블록의 부피비, 각 블록간과 블록과 용매간의 Flory-Huggins 상호작용계수 ($\chi$)등에 의해서 결정된다. (중략)

  • PDF

A Study on the Erection Scheduling in the Shipbuilding Using Constraint Satisfaction Technique (제약 만족 기법을 이용한 조선 산업에서의 탑재 일정 생성에 관한 연구)

  • Kim, Ki-Dong;Jang, Yong-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.91-99
    • /
    • 1999
  • The dock is the most important resource in shipbuilding yard. Among the shipbuilding schedules, the ship erection schedule in a dock is preferentially built. As results of it, the other schedules(machining in plants, block assembly, pre-painting, pre-rigging, painting and etc) are made. In this study, ship erection scheduling is formulated using ILOG Scheduler. This study is to develop a new problem solving method for ship erection to make an effective schedule based on Constraint Satisfaction Technique(CST).

  • PDF

Interfacial Engineering of Graphenes for Energy and Biosensor Devices

  • Park, H.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.12-12
    • /
    • 2011
  • Interfacing functional materials with electrical or biological systems is of prime importance in terms of expanding applicative fields and obtaining high performances of devices. Herein, I report the functionalization of graphenes through supramolecular assembly and their electrochemical applications into fuel cells, supercapacitors, and biosensor devices. The solution processable nanohybridization of graphenes by functional materials such as ionic liquids, polyelectrolytes, block copolymers, and biomaterials, described herein would pave the way to obtain high performances of flexible energy and biosensor devices as well as to overcome the existing technology barriers.

  • PDF

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.

Analysis of quasi-brittle materials using two-dimensional polygon particle assemblies

  • Lee, Jong Seok;Rhie, Yoon Bock;Kim, Ick Hyun
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.713-730
    • /
    • 2003
  • This paper contains the results of the study on the development of fracture and crack propagation in quasi-brittle materials, such as concrete or rocks, using the Discrete Element Method (DEM). A new discrete element numerical model is proposed as the basis for analyzing the inelastic evolution and growth of cracks up to the point of gross material failure. The model is expected to predict the fracture behavior for the quasi-brittle material structure using the elementary aggregate level, the interaction between aggregate materials, and bond cementation. The algorithms generate normal and shear forces between two interfacing blocks and contains two kinds of contact logic, one for connected blocks and the other one for blocks that are not directly connected. The Mohr-Coulomb theory has been used for the fracture limit. In this algorithm the particles are moving based on the connected block logic until the forces increase up to the fracture limit. After passing the limit, the particles are governed by the discrete block logic. In setting up a discrete polygon element model, two dimensional polygons are used to investigate the response of an assembly of different shapes, sizes, and orientations with blocks subjected to simple applied loads. Several examples involving assemblies of particles are presented to show the behavior of the fracture and the failure process.

Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation

  • Lee, Eun-Seong;Youn, Yu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1539-1544
    • /
    • 2008
  • A polymeric micelle, based on the poly(benzyl-L-histidine)-b-poly(ethylene glycol) (polyBz-His-b-PEG) diblock copolymer, was designed as a tumor-specific targeting carrier. The micelles (particle size: 67-80 nm, critical micelle concentration (CMC); 2-3 $\mu$g/mL) were formed from the diafilteration method at pH 7.4, as a result of self-assembly of the polyBz-His block at the core and PEG block on the shell. Removing benzyl (Bz) group from polyBz-His block provided pH-sensitivity of the micellar core; the micelles were physically destabilized in the pH range of pH 7.4-5.5, depending on the content of the His group free from Bz group. The ionization of His group at a slightly acidic pH promoted the deformation of the interior core. These pHdependent physical changes of the micelles provide the mechanism for pH-triggering anticancer drug (e.g., doxorubicin: DOX) release from the micelle in response to the tumor’s extracellular pH range (pH 7.2-6.5).