• Title/Summary/Keyword: aspheric

Search Result 285, Processing Time 0.03 seconds

Fabrication of the Imaging Lens for Mobile Camera using Embossing Method (엠보싱 공법에 의한 카메라 모듈용 광학렌즈 성형기법에 대한 연구)

  • Lee, C.H.;Jin, Y.S.;Noh, J.E.;Kim, S.H.;Jang, I.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.79-83
    • /
    • 2007
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale replication technology. A multiple-layered structure of several aspheric lenses in a mobile camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. We have demonstrated a VGA camera module fabricated by the wafer-scale replication processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having 200 um sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in order to achieve a higher resolution in wafer-scaled lenses for mobile camera modules.

  • PDF

Optical Design considering Efficiency Improvement of Aspheric Plastic Lens for LED Lighting (LED조명용 비구면 Plastic Lens의 성능향상을 위한 광학설계)

  • Lee, Hak-Suk;Park, Jong-Rak;Kim, Min-Jae;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.289-289
    • /
    • 2009
  • Light emitting diode(LED) has many advantages including lower energy consumption and longer lifetime and eco-friendly in comparison with traditional light sources. Spheric plastic lens generally used in LED lighting occurs aberration and ghost image which give displeasure and deteriorate vision quality in human eyes. Using the optical program (LightTools$^{TM}$, CodeV$^{TM}$), we were confirm the aberration and ghost image in optical simulation and employed aspheric lens form in the lens design to improve these problems. From the comparison of the simulation results between the aspheric lens and the spheric lens, we were ascertain to be improved both aberration and Ghost image.

  • PDF

Analysis of aspheric and diffractive surface effect for long wavelength infrared lens (장파장 적외선 렌즈의 비구면 및 회절면 효과 분석)

  • 김현수;이동한;김현규;이국환
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • We analyzed the aspheric and/or diffractive surface effects to the performance in the long wavelength infrared (8-12 $\mu$m). Also we investigated the dependence of the NA values for the fixed effective focal length 100 mm when the field angle was varied from 5 degrees to 30 degrees stepped by 5 degrees. We chose the merit function as a criteria to compare the performance of the different lenses. Based on the analysis of the aspheric and/or diffractive surface effects, we designed the optical system of F/l.0 for the uncooled thermal imaging system. As for detector the pixel size was 45 $\mu$m square and the number of pixels were a 320${\times}$240 pixels.

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

A Study on a Hartmann Test of Optical Mirror for On-Machine Measurement of Polishing machine (광학면 연마기의 OMM을 위한 Hartmann Test 방법 연구)

  • 김옥현;이응석;오창진;김용관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • Recently, aspheric optical lenses and mirrors, which are harder to manufacture and measure than the conventional spherical ones, are widely used, particularly in electronic fabrication process. Generally, interferometric optical method is used for the measurement of spherical optical surface. However, the interferometric method for aspheric surface measurement is difficult because it needs a precise null corrector and strict environmental conditions such as constant temperature, humidity and vibrations. We have been studied on the manufacturing of aspheric optics to improve the surface profile accuracy and productivity using a corrective polishing process. For the corrective polishing, a practical method of On-Machine Measurement (OMM) is required. For this purpose, an optical OMM system has been studied using the Shach-Hartmann test, which is very robust to the practical polishing environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by the least squares fitting. The measured result of the OMM system shows that the maximum deviation is less than 200 nm for the one of commercial Fizeau interferometer Wyko 6000.