• Title/Summary/Keyword: ash solution

Search Result 330, Processing Time 0.029 seconds

A Study on the Optimal Phosphorus Recovery Conditions from Sewage Sludge Ash by pH Control and Reuse of Extracts (하수슬러지 소각재 추출액의 pH 조절 및 재사용에 따른 최적의 인(P) 회수 조건 산정 연구)

  • Liu, Qi;Lim, Sung Hyun;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.15-26
    • /
    • 2020
  • To recover phosphorus from incinerated sewage sludge ash(ISSA), ISSA were extracted with sulfuric acid solution, and the optimal phosphorus recovery conditions were experimented by comparing the recovered phosphorus contents and heavy metals by raising pH. Also the phosphorus recovery efficiency was compared when acid extract was reused or classified by particle size of ISSA. The optimal conditions for recovering phosphorus from ISSA were 1N sulfuric acid solution with an L/S ratio of 10, and an extraction time of 30 minutes. Considering the addition of alkali substances and the content of heavy metals in the recovered sediment, it is concluded to recover phosphorus under pH 5. Reuse of the ISSA extract increased the recovery rate of phosphorus by 14~21% depending on the reuse rate (100 and 50%), but it also increased zinc contents to 33 and 21%, and copper contents to 35 and 20%, respectively. The experiment of ISSA divided into four sections by particle size showed that there was no distinct advantage of phosphorous recovery by classification of certain particle size of ISSA. The removal of heavy metals from extracts through EDTA and cation exchange resin showed no definite effect.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Comparative Analysis of Bone Mineral Contents with Dual-Energy Quantitative Computed Tomography (이중에너지광자선의 전산화단층촬영술을 이용한 정량적 골무기물함량의 비교분석)

  • Choi, Tae-Jin;Yoon, Seon-Min;Kim, Ok-Bae;Lee, Sung-Moon;Suh, Soo-Jhi
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.153-158
    • /
    • 1997
  • Purpose : The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent $K_2HPO_4$ standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). Method and Materials : The attenuation coefficient of tissues highly depends on the radiation energy density and effective atomic number of composition, The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone,fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and $120kV_p$ X rays was compared to ash weight of animal trabecular bone. Results : We obtained the mass attenuation coefficient of 0.2409 0.5608 and 0.2206 in $80kV_p$, and 0.2046, 0.3273 and $0.1971cm^2/g$ in $120kV_p$ X-ray spectra for water bone and fat equivalent materials, respectively. The BMC with DEQCT was acomplished with empirical constants $K_1=0.3232,\;K_2$=0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r= 0.998 and r= 0.996, respectively. Conclusion : The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone.

  • PDF

Longitudinal Changes in Calcium and Phosphorus Concentrations of Korean Human Milk (수유기간의 경과에 따른 한국인 인유의 칼슘 및 인 함량의 변화)

  • 윤태헌;태원찬;이정선
    • Journal of Nutrition and Health
    • /
    • v.24 no.3
    • /
    • pp.206-218
    • /
    • 1991
  • The influence of stage of lactation on the moisture. total soilds, ash, calcium, phosphorus and Ca/P ratio of human milk was studied. A total number of 32 lactating mothers provided 101 samples collected at 4 consecutive stages of lactation : days o to 5 postpartum(colostrum); days 6 to 10 postpartum(transitional): days 25-35 postpartum(mature). and days 55-70 postpartum(mature). Moisture and total solids concentrations showed a little but significant difference at the 25-35 day stage as compared with those of colostrum and then remained stable, but ash levels decreased significantly with the elapse of lactation period. Calcium levels increased significantly from colostrum to transitional milk stage with a further less significant increase at mature stages. Between colostrum and transitional stages, phosphorus concentration showed a significant increase $(9.9\pm2.4$ vs $15.5\pm4.9$ mg/100 ml, p<0.001)but between the 25-35 day and the 55-70 day stage phosphorus values did not change significantly. Ca/P ratios for colostrum. transitional, the 25-35 day and the 55-70 day stages were 2.28, 1.76, 1.68 and 1.95, respectively. No significant relationship was found between ash. calcium, phosphorus or Ca/P ratio of milk and maternal parity. When modified milk formulas were reconstituted using the total solids of human mature milk as amount of the modified milk formula in 100 ml of infant feeding solution. ash, and Ca/P ratio were similar to those of human milk. However considerably higher concentrations of calcium and phosphorus exist in the reconstitution fluid than those observed in human milk.

  • PDF

Watertightness and Durability Properties of Ultra Rapid Hardening Grout using Bottom-ash (잔골재 대체재로서 바텀애쉬를 이용한 초속경 그라우트재의 수밀성 및 내구특성)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Cho, Byoung-Young;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.102-109
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, watertightness and durability properties of URHM on temperature condition of construction field were performed. Test result, seepage quantity and water absorption coefficient regarding watertightness of URHM were as in the following : series II > series I. Seepage quantity for the standard condition were smaller than low temperatures. all specimens were satisfied below 20g as standards of seepage quantity on KS F 4042. Because of the decrease of unit cement content by to replacement of blast furnace slag, the neutrlization resistance for durability properties was reduced. The result of alkali resistance and acide resistance, compressive strengths for specimens soaked in calcium hydroxide solution of seriesI were lower than compressive strengths for specimens not soaked. On the other hand, the case of series II show that the deterioration of compressive strengths for specimens was not almost showed. Compressive strengths of specimens soaked were similar with specimens not soaked except series II-C in $5^{\circ}C$. Therefore, specimens using both blast furnace slag and bottom ash were good in alkali resistance and acide resistance.

  • PDF

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

Comparative Characterization of AFC Precipitated Using Vacuum Drying, Dilution Precipitation and Spray Drying (감압건조, 희석침전, 분무건조 방식으로 제조된 무회분석탄의 특성)

  • Kwon, Ho Jung;Choi, Ho Kyung;Jo, Wan Taek;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • Solid ash-free coal (AFC) samples recovered from solvent-extracted solution by vacuum drying, dilution precipitation and spray drying methods were compared in terms of physical properties and chemical structure. AFC was prepared by using Kideco coal (Indonesian sub-bituminous coal) and polar N-methyl-2-pyrrolidone (NMP) solvent as raw materials. The physical properties of the AFCs were characterized with proximate, ultimate, and calorific value analysis. In analyzing the chemical structure, FTIR and NMR were used. the proximate analysis showed much reduced ash in the AFCs compared to parent raw coal. The FTIR result showed that the extraction solvent was not fully removed from the AFC prepared by vacuum drying. However, the solvent was not detected in the AFC recovered by using dilution precipitation. Dilution precipitation has advantages over the other two methods, since it can be done at relatively low temperature and separate ash-free coal from extraction solvent more effectively.

Determination of PEG Concentration and Solvent Selection for Freeze-Drying of Highly-Degraded Waterlogged Woods (고함수율 수침고목재의 동결 건조를 위한 PEG 전처리 농도 및 용매 설정)

  • Kim, Soo-Choul;Park, Won-Kyu;Yi, Yong-Hee
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • Dimension stability was examined after PEG pretreatment and post freeze-drying treatment in order to determine the PEG(#3350) concentration and solvent for pre-treatment of freeze-drying of highly-degraded waterlogged ash woods(Fraxinus spp.; ca. 5,700 BP) excavated from peat lands at Pyungtack, Kyounggi-do. At the low concentration (<30-40%) of PEG soaking in both water and t-butanol, the weight increases abruptly, but at high concentration (>50%) gradually, consequently, taking longer treatment time. PEG loading was higher in t-butanol solution than in water. However, the best dimesional stability was obtained from freeze-drying after lower PEG solution (40% in water) soaking. Low dimensional stability, found in the samples treated with higher PEG solutions (60%-70% in t-butanol), might come from incomplete freezing and excess PEG absorbing moisture. The samples air-dried after 70% PEG treatment had collapse defects. In conclusion, the use of low concentration (about 40% in water) PEG solution was the most suitable pretreatment for freeze drying of highly-degraded waterlogged ash woods.

  • PDF

Evaluation of Acid Digestion Procedures to Estimate Mineral Contents in Materials from Animal Trials

  • Palma, M.N.N.;Rocha, G.C.;Valadares Filho, S.C.;Detmann, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1624-1628
    • /
    • 2015
  • Rigorously standardized laboratory protocols are essential for meaningful comparison of data from multiple sites. Considering that interactions of minerals with organic matrices may vary depending on the material nature, there could be peculiar demands for each material with respect to digestion procedure. Acid digestion procedures were evaluated using different nitric to perchloric acid ratios and one- or two-step digestion to estimate the concentration of calcium, phosphorus, magnesium, and zinc in samples of carcass, bone, excreta, concentrate, forage, and feces. Six procedures were evaluated: ratio of nitric to perchloric acid at 2:1, 3:1, and 4:1 v/v in a one- or two-step digestion. There were no direct or interaction effects (p>0.01) of nitric to perchloric acid ratio or number of digestion steps on magnesium and zinc contents. Calcium and phosphorus contents presented a significant (p<0.01) interaction between sample type and nitric to perchloric acid ratio. Digestion solution of 2:1 v/v provided greater (p<0.01) recovery of calcium and phosphorus from bone samples than 3:1 and 4:1 v/v ratio. Different acid ratios did not affect (p>0.01) calcium or phosphorus contents in carcass, excreta, concentrate, forage, and feces. Number of digestion steps did not affect mineral content (p>0.01). Estimated concentration of calcium, phosphorus, magnesium, and zinc in carcass, excreta, concentrated, forage, and feces samples can be performed using digestion solution of nitric to perchloric acid 4:1 v/v in a one-step digestion. However, samples of bones demand a stronger digestion solution to analyze the mineral contents, which is represented by an increased proportion of perchloric acid, being recommended a digestion solution of nitric to perchloric acid 2:1 v/v in a one-step digestion.