• Title/Summary/Keyword: ash analysis

Search Result 1,232, Processing Time 0.022 seconds

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Efficiency factor of high calcium Class F fly ash in concrete

  • Sata, V.;Khammathit, P.;Chindaprasirt, P.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.583-595
    • /
    • 2011
  • This paper studied the cement efficiency factor (k factor) of high calcium Class F fly ash. This k factor represents a unit of fly ash with efficiency equivalent to k unit of cement. The high calcium Class F fly ash was used to replace cement in concrete. The modified Bolomey's law with linear relationship was used for the analysis of the result of compressive strength, cement to water ratio (c/w) and fly ash to water ratio (f/w) by using the multi-linear regression to determine the k factor and other constants in the equations. The results of analysis were compared with the results from other researcher and showed that the k factor of high calcium Class F fly ash depends on the fineness of fly ash, replacement level and curing age. While the amount of CaO content in Class F fly ash not evident. Furthermore, necessary criteria and variables for the determination of the k factor including the use of the k factor in concrete mix design containing fly ash were proposed.

Dyeing of Cotton Knitted Fabrics with Volcanic Ash(I) -The Compositions of Volcanic ash Deposited on the Cotton Knitted Fabrics- (화산재를 이용한 면 편성물의 염색(I) - 면 편성물에 부착된 화산재의 성분분석을 중심으로 -)

  • 유복선;신인수
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.8
    • /
    • pp.55-62
    • /
    • 2003
  • Natural dyes generally fan into two categories; organic dyes coming from animals and plants and inorganic dyes obtained from various minerals such as bengala, loess, ultramarine, prussian blue and etc. The main components of volcanic ash is clay mineral such as kaolinite, illite, quartz. Clay minerals Composing volcanic ash are kaolinite[$Al_4Si_4O_{10}{(OH)_{8}}$], illite[$K_{X}Al_2(Si,\;Al)_4O_{10}{(OH)}_2$], quartz[$SiO_2$], homblende[$Na_{0-1}\;Ca_2{(Mg,\;Fe,\;Al)}_5{(Si,\;Al)}_{8}O_{22}{(OH)}_2$]and etc. And the redish color mainly comes from iron oxide. In this paper, two different classes of dyeing process were tested; dyeing with volcanic ash only and cationic agent pre-treatment followed by dyeing with volcanic ash. The compositions of the volcanic ash powder and the volcanic ash deposited on the cotton knitted fabrics identified by energy dispersive spectrometer and XRD analysis. The major chemical components of volcanic ash deposited on the cotton knitted fabrics were confirmed to be the saicon oxide, iron oxide, and aluminum oxide and etc. According to the analysis by XRD and EDS-SEM, kaolinite, illite and quartz were also identified.

A Characteristic Analysis of Physical, Chemical and Electrical Property for Bunker C Fly Ash (Bunkder C유 회분의 물리적, 화학적, 전기적 특성분석)

  • 이재근;이정언;안영철
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.88-96
    • /
    • 1996
  • The characteristic analysis of fly ash generated from a fired power plant using bunker-C oil has been investigated. Ash size distribution by an optical microscopy with image processing technique, morphological shape by a scanning electron microscope(SEM) and microscope, chemical composition by the inductively coupled plasma emission spectrometry(ICP), and resistivity measurement as a function of temperature and moisture content by the resistivity meter are performed. A study of physical, chemical and electrical characteristics of bunker-C fly ash plays an important role of improving the performance of an electrostatic precipitator and protecting air pollution. The samples of bunker-C fly ash for analysis were collected from the electrostatic precipitator hopper of Ulsan Power Plant Unit 1 and Pusan Power Plant Unit 1. Mass median diameter(MMD) of bunker-C fly ash was measured 12.7${\mu}{\textrm}{m}$, while MMD of fly ash generated from the mixture of bunker-C oil(40%) and domestic anthracitic coal(60%) was 25.7${\mu}{\textrm}{m}$. The morphological structure of bunker-C fly ash consisted of fine particles of non-spherical shape. The primary chemical components of bunker-C fly ash were composed of SiO2(2.36%), Al2O3(4.91%), Fe2O3(14.33%) and C(11.84%). Resistivity of bunker-C fly ash was found to be increased with increasing temperature at the range of 100~15$0^{\circ}C$ and was measured 103~104 ohm-cm.

  • PDF

Gas-Solid Heat Transfer Analysis of Bubbling Fluidized Bed at Bottom Ash Cooler (바닥재 냉각기 기포유동층의 기체-고체 연전달 분석)

  • Gyu-Hwa, Lee;Dongwon, Kim;Jong-min, Lee;Kyoungil, Park;Byeongchul, Park
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this study we investigated the gas to solid heat transfer of bubbling fluidized bed bottom ash cooler installed at the Donghae power plant in South Korea. Several different analyses are done through 1-D calculations and 3-D CFD simulation to predict the bottom ash exit temperatures when it exits the ash cooler. Three different cases are set up to have consideration of unburnt carbon in the bottom ash. Sensible heat comparison and heat transfer calculation between the fluidization air and the bottom ash are conducted and 3-D CFD analysis is done on three cases. We have obtained the results that the bottom ash with unburnt carbon is exiting the ash cooler, exceeding the targeted temperature from both 1-D calculation and 3-D CFD simulation.

Characterization of Fly Ash by Field-Flow Fractionation Combined with SPLITT Fractionation and Compositional Analysis by ICP-OES

  • Kang, Dong Young;Eum, Chul Hun;Lee, Seungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Accurate analysis of fly ash particles is not trivial because of complex nature in physical and chemical properties. SPLITT fractionation (SF) was employed to fractionate the fly ash particles into subpopulations in large quantities. Then the SF-fractions were analyzed by the steric mode of sedimentation field-flow fractionation (Sd/StFFF) for size analysis. The SF-fractions were also analyzed by ICP-OES. The results showed that the fly ash is mainly composed of Fe, Ca, Mg and Mn. No particular trends were observed between the particle size and the concentrations of Fe, Ca, Mg, while Mn, Cu and Zn were in higher concentrations in smaller particles. Sample preparation procedures were established, where the fly ash particles were sieved to remove large contaminants, and then washed with acetone to remove organics on the surface of particles. The sample preparation and analysis methods developed in this study could be applied to other environmental particles.

Strength and Water Purification Characteristics of Effective Microorganism-applied Volcanic Ash Block (유용미생물을 적용한 화산재 블록의 강도 및 수질정화 특성)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Choi, Joong-Dae;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • The aim of this study is to investigate strength and water purification characteristics of effective microorganism-applied volcanic ash block using flexural strength test and water quality analysis. The specimens were prepared with volcanic ash from Mt. Baekdusan and Mt. Hallasan, and cement as the ratios of 3.5:1, 4.0:1, 4.5:1, 5.0:1 with and without metakaolin. Flexural strength degraded with increasing of the amount of volcanic ash, and increased with addition of metakaolin as a binder. Based on these results, the optimal ratio for fabricating volcanic ash-cement mixture block is determined as 3.5:1 with metakaolin. Furthermore, from water quality analysis on contaminated water, removal ability of effective microorganism-applied volcanic ash-cement mixture block and caged volcanic ash block against T-N, T-P and SS was highly evaluated because of adsorption due to the large specific surface area of volcanic ash. Hence, volcanic ash-cement mixture block and caged volcanic ash block possibly contribute to water purification.

Economic Analysis of Dry Bottom Ash Handling System in a Pulverized Coal Thermal Power Plant in Korea (國內 微分炭 火力發電所에서 바닥재 再活用을 위한 乾式 바닥재 處理시스템 導入의 經濟性 分析)

  • Oh, Se-Won
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.51-56
    • /
    • 2004
  • Economic benefits of the dry bottom ash handling system over the wet bottom ash handling system in a new 500MW${\times}$2units pulverized coal thermal power plant in Korea were evaluated. The higher initial capital cost in the dry bottom ash handling system was estimated. However, this higher initial capital costs would be compensated with reductions of the operating cost mainly due to the recycling of bottom ash. Economic analysis showed that the payback period of 4.9 years and the internal rate of return at 21.1% were expected for the additional initial capital cost of the dry bottom ash handling system.

Concrete Mixture Design Method with Large Amount of Land Reclamation Ash (매립석탄회 고배합 콘크리트 배합설계 기법)

  • Han, Sang-Mook;Song, Young-Chul;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.344-347
    • /
    • 2004
  • The amount of coal ash has been increasing and development of effective use is urgently needed. Various by-products and waste are expected to be used as resources from the point of reduction in environmental load. This is an experimental study to compare the properties of high volume coal ash concrete using the reclaimed coal ash. For this purpose, authors have started work to develop a production method of hardening coal ash concrete. Laboratory tests show that the optimum mixture of coal ash concrete can be determined from multiple regression analysis. According to test results, it was found that the compressive strength of the concrete can be determined by a single curve. And it is obtained from the analysis of the results tested for concrete with the ratio of total power to water and amount of land reclamation ash.

  • PDF

Geotechnical Properties of Clay-Fly Ash Mixtures (점토-플라이 애시 혼합물의 지반공학적 특성)

  • Kwon , Moo-Nam;Chung , Sung-Wook;Lee, Sang-Ho;Goo , Jung-Min;Kim , Hyun-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.99-106
    • /
    • 2004
  • Although fly ash has possesses viable engineering properties, an overwhelming majority of fly ash from coal combustion is still placed in storage or disposal sites. This study was undertaken to investigate the physical and mechanical properties of clay-fly ash mixture and to furnish engineering data when fly ash utilized as engineering materials. This paper includes geotechnical properties of fly ash, clay-fly ash mixtures and results of compaction test, unconfined strength test, direct shear test, leaching test and stability analysis of clay-fly ash bank slope. If proper amount of fly ash was put in clay, the clay-fly ash mixture has an increase of unconfined strength and stability of bank slope.