• Title/Summary/Keyword: ascospore germination

Search Result 8, Processing Time 0.032 seconds

Morphological Characteristics of Conidiogenesis in Cordyceps militaris

  • Shrestha, Bhushan;Han, Sang-Kuk;Yoon, Kwon-Sang;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Conidial development of Cordyceps militaris was observed from germinating ascospores and vegetative hyphae through light and scanning electron microscopy (SEM). Ascospores were discharged from fresh specimens of C. militaris in sterile water as well as Sabouraud Dextrose agar plus Yeast Extract (SDAY) plates. We observed ascospore germination and conidial formation periodically. Under submerged condition in sterile water, most part-spores germinated unidirectionally and conidia were developed directly from the tips of germinating hyphae of part-spores within 36 h after ascospore discharge, showing microcyclic conidiation. First-formed conidia were cylindrical or clavate followed by globose and ellipsoidal ones. Germination of ascospores and conidial development were observed on SDAY agar by SEM. Slimy heads of conidia on variously arranged phialides, from solitary to whorl, developed 5 days after ascospore discharge. Besides, two distinct types of conidia, elongated pyriform or cylindrical and globose, were observed in the same slimy heads by SEM. Conidia were shown to be uninucleate with 4,6-diamidino-2-phenylindole staining. Conidiogenous cells were more slender than vegetative hyphae, having attenuated tips. Microcyclic conidiation, undifferentiated conidiogenous hyphae (phialides), polymorphic conidia and solitary, opposite to whorled type of phialidic arrangement are reported here as the characteristic features of asexual stage of C. militaris, which can be distinguished from other Cordyceps species.

Germ Tube Formation of Ascospores of Two Terrestrial Higher Ascomycetes, Hypoxylon mammatum and H. truncatum

  • Lee, Yang-Soo;Han, Sang-Sub;Shin, Jong-Ho;Lee, Young-Mi;Song, Bong-Keun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.10-16
    • /
    • 2000
  • Two wood decay ascomycetes fungi identified as Hypoxylon mammatum and H. truncatum were isolated from backyard of Korea Research Institute of Chemical Technology (KRICT) in Korea. Hypoxylon truncatum is newly recorded as a wood degrader in Korea. Unusual germination mechanisms of ascospores in H. mammatum and H. truncatum are described and illustrated. The differences between two species were noticed on the process of germ tube formation. In the process of germ tube formation, the fast movement to pigmented ascospores activated from their perispores was termed as spore eclosion that was only found in H. mammatum. This sophisticated recognition mechanism indicated the existence of specific eclosion and germ tube formation due to the composition of cell wall layers and their preferable host derive, based on examined two species under a genus. The observation on present study postulates different composition of wall layers of ascospore and different nutrient composition for germination.

  • PDF

Effect of Sodium Chloride (NaCl) on the Mycelial Growth and Ascospore Germination of Rhizina undulata, the Root Rot Fungus of Coniferous Trees

  • Lee, Sun Keun;Lee, Dong Hyeon;Lee, Kyoung-Tae;Park, Yong Bae;Seo, Sang-Tae;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • Rhizina undulata, the causal agent of Rhizina root rot, is a soil-borne fungus occurring on coniferous trees. The destruction of coastal forests caused by R. undulata infection has been mainly associated with bonfires at camping sites. However, Rhizina root rot was observed in the western coastal forests without fire. It was hypothesized that Rhizina root rot in this area might be closely related to the soil salinity, which can facilitate the growth and survival of R. undulata. So, the variation in sodium chloride (NaCl) resistance among isolates of Rhizina undulata was compared using liquid media containing different concentrations of NaCl ranging from 0 mM to 300 mM. Our results showed that, albeit of no growth at a higher concentration of NaCl (300 mM), most of R. undulata isolates were capable of germinating and grew at up to 100 mM, indicating that NaCl resistance varies among R. undulata isolates. It was further found that isolates from coastal areas seemed to be more tolerant to NaCl than those further away the coast. We demonstrated that R. undulata could be possible to survive in coastal areas, but was lower NaCl tolerance than other fungi.

Comparison of Cenangium Dieback Fungus Isolated from Three Different Species of Pine

  • Jung, Joo-Hae;Lee, Sang-Yong;Lee, Jong-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.216-221
    • /
    • 2001
  • Dieback of pine branches or twigs with brown needles occurs most commonly on Pinus species after severe winter in Korea. In this study, Cenangium ferruginosum was isolated from infected stems, branches, and twigs of Pinus koraiensis (C1), P. densiflora (C2), and P. thunbergii (C3). Morphological and cultural characteristics of the isolates were than compared. There were no significant differences in the morphological characteristics of conidia and ascospores produced by the three isolates. However, cultural differences were observed among the isolates. Optimum temperatures for mycelial growth of C1, C2, and C3 were 15, 20, and $20^{\circ}$, respectively. C1 produced a few conidia and no ascospores, while C2 and C3 produced abundant ascospores and conidia. While optimum temperatures for mycelial growth ranged from 15 to $20^{\circ}$, mycelial growth was also relatively good at lower temperatures of 5-$10^{\circ}$. Conidiomata and conidia were produced on MSA (malt extract soya peptone agar) after 25-30 days of incubation in the dark at $15^{\circ}$. Apothecia were produced by altering culture condition from 15 to $20^{\circ}$, and incubating for 35-60 more days. Optimum temperature for ascospore and conidium germination was $20^{\circ}$. RAPD analysis revealed that there was high similarity of 0.78 between C2 and C3, and low similarity of 0.31 between C2 or C3 and C1.

  • PDF

Survival Factor Gene FgSvf1 Is Required for Normal Growth and Stress Resistance in Fusarium graminearum

  • Li, Taiying;Jung, Boknam;Park, Sook-Young;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • Survival factor 1 (Svf1) is a protein involved in cell survival pathways. In Saccharomyces cerevisiae, Svf1 is required for the diauxic growth shift and survival under stress conditions. In this study, we characterized the role of FgSvf1, the Svf1 homolog in the homothallic ascomycete fungus Fusarium graminearum. In the FgSvf1 deletion mutant, conidial germination was delayed, vegetative growth was reduced, and pathogenicity was completely abolished. Although the FgSvf1 deletion mutant produced perithecia, the normal maturation of ascospore was dismissed in deletion mutant. The FgSvf1 deletion mutant also showed reduced resistance to osmotic, fungicide, and cold stress and reduced sensitivity to oxidative stress when compared to the wild-type strain. In addition, we showed that FgSvf1 affects glycolysis, which results in the abnormal vegetative growth in the FgSvf1 deletion mutant. Further, intracellular reactive oxygen species (ROS) accumulated in the FgSvf1 deletion mutant, and this accumulated ROS might be related to the reduced sensitivity to oxidative stress and the reduced resistance to cold stress and fungicide stress. Overall, understanding the role of FgSvf1 in F. graminearum provides a new target to control F. graminearum infections in fields.

Control of Diatrype stigma Occurred on the Bed-log of Shiitake Using Wood Vinegar, Plant Extracts and Fungicides (목초액, 식물추출물 및 살균제를 이용한 표고골목해균인 주홍꼬리버섯 방제)

  • Bak, Won-Chull;Lee, Bong-Hun;Ka, Kang-Hyeon;Cho, Tae-Soo;Lee, Hak-Joo;Lee, Sung-Suk;Kim, Myung-Kil;Cha, Byeong-Jin
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • Attempts were made to control Diatrype stigma occurred on the bed-log of Shiitake using wood vinegar, Pinus koraiensis extract, Piper nigrum extract, and fungicides. Mycelial growth of D. stigma was inhibited completely at 35,000 ppm and no ascospore germinated at 25,000 ppm wood vinegar. Inhibition rates of Pinus koraiensis extract (200 ppm), and Piper nigrum extract (1,000 ppm) to ascospore germination were 98.9% and 95.9%, respectively. In fungicide selection, minimum inhibitory concentration (MIC) of benomyl, carbendazim, and thiabendazole ranged $0{\sim}0.4\;{\mu}g\;a.i/m{\ell}$. Difenoconazole at $0.08\;{\mu}g\;a.i/m{\ell}$ inhibited 98.9% of ascospore germination. Inhibition efficacy of fungicides was not highly variable among the low-, middle-, and high-temperature type strains of shiitake. Benomyl, carbendazim, thiabendazole and thiophanate-methyl could not suppress the mycelial growth of Shiitake. Tebuconazole at $0.4\;{\mu}g\;a.i/m{\ell}$ suppressed 80% of the mycelial growth and it was the highest inhibition rate among the fungicides. In field trials, wood vinegar, Pinus koraiensis extract, Piper nigrum extract, and fungicides were sprayed on the bed-logs before or after D. stigma produced pycnidia. Wood vinegar at 150,000 ppm concentration, showed control effect of 72.7% in the treatment before pycnidiospore formation. On the other hand, 70,000 ppm wood vinegar and 1,000 ppm of thiophanate-methyl showed control effects of 58.1% and 52.3% in the treatment after pycnidiospore formation.

Roles of Ascospores and Arthroconidia of Xylogone ganodermophthora in Development of Yellow Rot in Cultivated Mushroom, Ganoderma lucidum

  • Kang, Hyo-Jung;Chang, Who-Bong;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.138-147
    • /
    • 2011
  • Xylogone ganodermophthora, an ascomycetous fungus, is known to cause yellow rot in the cultivated mushroom Ganoderma lucidum. In this study, we investigated the dissemination of this fungal pathogen in G. lucidum grown in cultivation houses. To determine the role of ascospores produced by X. ganodermophthora in disease development, we constructed a green fluorescent protein-labeled transgenic strain. This X. ganodermophthora strain produced a number of ascomata in the tissues of oak logs on which G. lucidum had been grown and on the mushroom fruit bodies. However, the ascospores released from the ascomata were not able to germinate on water agar or potato dextrose agar. Moreover, less than 0.1% of the ascospores showed green fluorescence, indicating that most ascospores of X. ganodermophthora were not viable. To determine the manner in which X. ganodermophthora disseminates, diseased oak logs were either buried in isolated soil beds as soil-borne inocula or placed around soil beds as air-borne inocula. In addition, culture bottles in which G. lucidum mycelia had been grown were placed on each floor of a five-floor shelf near X. ganodermophthora inocula. One year after cultivation, yellow rot occurred in almost all of the oak logs in the soil beds, including those in beds without soil-borne inocula. In contrast, none of the G. lucidum in the culture bottles was infected, suggesting that dissemination of X. ganodermophthora can occur via the cultivation soil.

Some Factors Affecting Growth of Diehlomyces microsporus and Chemical Control of Truffle Disease in Cultivation of Agaricus bisporus (양송이 괴균병균(塊菌病菌)의 방제(防除) 및 생장요인(生長要因)에 관한 연구(硏究))

  • Kim, Gwang-Po;Cha, Dong-Yeul;Chung, Hoo-Sup
    • The Korean Journal of Mycology
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 1981
  • Mycelial growth and fruit body formation of Diehlomyces microsporus were best on mushroom spawn extract medium and rice bran extract medium, respectively. L-asparagine, fructose and glucose were good nutrient sources for mycelial growth. Optimum temperature for mycelial growth ranged at $25{\sim}28^{\circ}C$. Maximum mycelial growth occurred at pH 5.5 while optimum pH for ascospore germination was 6.0. Mycelial mats of D. microsporus did not survive at $60^{\circ}C$ for 60 minutes while ascospores at $80^{\circ}C$ for 120 minutes. Damages of fruit body of Agaricus bisporus caused by D. microsporus were maximum when the fruit bodies were infected at spawning and casing on the compost. The truffle disease could be controlled by basamid with $100{\sim}150 ppm$ treating on the compost after filling.

  • PDF