• Title/Summary/Keyword: asbestos analysis

Search Result 98, Processing Time 0.024 seconds

Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry (석면취급 사업장 근로자의 석면폭로 특성에 관한 연구)

  • Paik, Nam Won;Lee, Young Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.1 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

Asbestos Analysis of China Sepiolite by Transmission Electron Microscopy (중국산 해포석 내 석면 함유 유무 분석)

  • Song, Se Wook;Chung, Yong Hyun;Han, Jeong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2013
  • Objectives: 21 sepiolite substances produced in China were investigated for the presence of asbestos in their materials. Materials and methods: In order to identify asbestos in sepiolite substances, test materials were analyzed using a transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS) for confirming their shape and components (atomic %). Results: Five of 21 sepiolte substances were asbestos-containing materials. Two chrysotile containing sepiolite proved to be asbestoscontaining materials, as did two chrysotile mixed with tremolite containing sepiolite. 16 sepiolite substances did not contain asbestos materials. Conclusions: When importing sepiolite substances, they must be analyzed to determine if there is asbestos in their materials.

Analysis of Influencing Factors on Asbestos Demolitions Using a Text Mining Method (텍스트 마이닝 기법을 활용한 석면해체·제거작업 영향 요인 분석)

  • Lee, Jae-Woo;Kim, Do-Hyun;Kim, Yu-Jin;Noh, Jae-Yun;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.39-40
    • /
    • 2022
  • The use of asbestos has been completely prohibited in Korea since 2015. Therefore, nationally, the asbestos demolitions in the building are actively underway. In the process of demolishing asbestos, scattering dust occurs, which poses a risk to human body. These dusts causes fatal disease, and especially there is an increasing concern of safety about construction workers and building users. Until this day, however, only few researches have been conducted on asbestos demolishing process. Accordingly, it is necessary to analyze key factors and to develop a safety prediction model for workers. This study is an early stage of building quantified DB, and aims to actualize the safety problems of asbestos demolishing process using text mining method.

  • PDF

A Comparative Analysis of Risk Assessment Models for Asbestos Demolition (석면 해체 작업의 위험성평가모델 비교 분석)

  • Kim, Dong-Gyu;Kim, Min-Seung;Lee, Su-Min;Kim, Yu-Jin;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.99-100
    • /
    • 2022
  • As the danger of exposure to the asbestos has been revealed, the importance of demolition asbestos in existing buildings has been raised. Extensive body of study has been conducted to evaluate the risk of demolition asbestos, but there were confined types of variables caused by not reflecting categorical information and limitations in collecting quantitative information. Thus, this study aims to derive a model that predicts the risk in workplace of demolition asbestos by collecting categorical and continuous variables. For this purpose, categorical and continuous variables were collected from asbestos demolition reports, and the risk assessment score was set as the dependent variable. In this study, the influence of each variable was identified using logistic regression, and the risk prediction model methodologies were compared through decision tree regression and artificial neural network. As a result, a conditional risk prediction model was derived to evaluate the risk of demolition asbestos, and this model is expected to be used to ensure the safety of asbestos demolition workers.

  • PDF

Asbestos Determination of Some Domestic Building-Materials Using X-ray diffraction (국내 건축자재에 함유된 석면의 함량에 대한 X-선회절분석 연구)

  • Hwang, Jin-Yeon;Lee, Hyo-Min;Oh, Ji-Ho;Park, Gi-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.119-131
    • /
    • 2011
  • The asbestos contents in some representative building materials were analyzed using JIS (Japanese Industrial Standard) X-ray diffraction (XRD) method. The changes in mineral composition during analysis process and problems in JIS method were also examined. XRD analysis of some representative domestic building materials used for roof, wall, ceiling, and floor indicates that slate have the highest asbestos content having 6.87~6.93% of chrysotile. Other building materials analyzed in this study also have 1.35~3.98% of chrysotile contents. The XRD analysis results of asbestos contents in some domestic building materials are presented in this study. This method is very effective for the asbestos content evaluation of building materials according to newly modified asbestos content regulation (Law of Industrial Safety and Health, 2007-26) that limits asbestos content less than 0.1% by Ministry of Employment and Labor. Small amount of tremolite as well as chrysotile were also observed in some samples. With consideration of crystal shape, contents and geological occurrence, it is considered that tremolite is an associated mineral of chrysotile and is not intentionally added. Complemental analyses with optical microscope and SEM/EDS are also necessary because XRD method cannot distinguish asbestiform from non-asbestiform. The XRD method applied in this study is very effective in the asbestos content analysis of building materials, specially building materials showing high asbestos concentration in residues due to the high loss rate with ashing and acid dissolution procedure.

Application of JSA and Checklist in Asbestos Sealing (석면 해체제거 보양작업에서 JSA 및 Checklist 적용)

  • Cho, Guy Sun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • As asbestos-containing buildings are getting older, asbestos deconstruction works are increasing. As a result, accident risks such as falls, cuts, electric shocks, and suffocation are increasing. Existing studies are mostly about health management and institutional policy research and there is little research on work risk. So workplace risk assessments that are easily applicable in the field are required to be applied. Sealing is the first process of asbestos deconstruction and is the first step to ensure worker's safety. Job Safety Analysis(JSA) and Checklist were used to identify the risk factors and to calculate the level of the risk. By comparing the two risk assessment tools, it was figured out that the JSA is appropriate for the initial process and change of work procedure while Checklist is appropriate for repetitive work. Because the sealing process is sort and simple, it is unlikely to cause serious injury. But since the risk of falling and cuts are exist, safety education and supervision are necessary to maintain a safe working environment.

A study on establishing asbestos analysis method using a transmission electron microscope with Energy dispersive X-ray analyzer (TEM-EDX) (에너지 분산 X선 분석장치가 장착된 투과전자현미경을 이용한 석면분석방법)

  • Han, Jeong Hee;Kim, Kwang Jin;Chung, Yong Hyun;Lee, Jun Yeon;Lee,, Yong;Chung, Ho Keun;Yu, Il Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • To establish an accurate asbestos analysis method for workplace samples, chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite asbestos fibers were analyzed for their morphology, atomic content and electron diffraction patterns. The morphology of asbestos fiber was evaluated in $10,000{\times}$ magnification. The atomic contents was analyzed by X-ray analyzer (TEM-EDX). Asbestos fibers were further assessed using electron diffraction (ED) patterns to provide an additional criterion for classifying the asbestos fibers. Twenty asbestos fibers were initially randomly selected for morphological evaluation; based on an aspect ratio (length : diameter = 3:1). Then the fibers were determined for their EDX spectrums and ED patterns. Our results showed that only chrysotile fiber has a hollow tube structure to be distinguished from other asbestos fibers. Although asbestos fibers had similar morphology, they had different EDX spectrums and ED patterns. Our results on the atomic content of asbestos fibers were very similar to those of other researchers, but amosite and crocidolite had a little difference in atomic content compared with the results from other researchers. The difference may be due to the difference in equipment or asbestos sample selection. A study on asbestos samples from biological specimens to establish a criterion for determining occupational asbestos exposed diseases should be done in the near future.

  • PDF

Occupational Exposure to Airborne Asbestos Fibers in Serpentine Quarries and a Steel Mill (사문석 채석장과 제철소 내 사문석 취급 근로자의 공기 중 석면 노출 평가)

  • Kwon, Jiwoon;Seo, Hoe-Kyeong;Kim, Kab Bae;Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Objectives: Asbestos contents of crushed serpentine rocks and airborne fiber concentrations of workers were determined at two serpentine quarries and a steel mill. Methods: Bulk samples of uncrushed and crushed serpentine rocks were collected and analyzed by PLM and TEM. Airborne asbestos samples were collected from the breathing zone of workers and the vicinity of working area and analyzed by PCM and TEM. Results: Chrysotile was identified with antigorite, lizardite and non-asbestiform actinolite in bulk samples. The arithmetic means of chrysotile contents in crushed serpentines were 0.11, 0.01, 0.42%(W/W) by quarry A, quarry B and a steel mill, respectively. The asbestos concentrations of all personal samples were less than 0.1 f/cc which is the permissible exposure limit of workers in Korea. The arithmetic means of airborne asbestos concentrations were 0.017 f/cc and 0.009 f/cc in personal samples collected from two serpentine quarries. The asbestos concentrations of all personal samples collected from a steel mill were less than LODs by PCM analysis but asbestos was detected in area samples by TEM. By the job tasks of serpentine quarries, crusher/separator operation generated the highest exposure to airborne asbestos. Conclusions: Although chrysotile contents in crushed serpentines of quarries were less the permissible level, the highest exposure of workers in serpentine quarries reached up to 76% of the permissible level of airborne asbestos. There were also possibilities of occupational exposure to airborne asbestos in a steel mill. The present exposure study should encourage further survey and occupational control of quarries producing serpentine or other types of asbestos-bearing rocks.

The Patent Analysis of the Treatment Technology of Asbestos Wastes (석면 폐기물 처리 특허기술 분석)

  • Kim, Jong-Heon;Cho, Jin-Dong;Lee, Sang-Kwon;Cha, Seong-Ki
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.451-462
    • /
    • 2011
  • Asbestos or its applications have been used for long times and for various purposes in our life because of their merits, namely fire resistance, electric insulation and chemical resistance capacity etc. Despite of theses many merits, one of the problems of asbestos is shown toxicity according to its fiber type. So we need data to solve about this problem. In this paper, we study on the technical method of asbestos waste treatment and on the trends of asbestos researches and developments by the analysis of its patents and DWPI database materials. As a result, the asbestos-waste treatment data in the its related patents is used 267 cases to analyze. These data are divided into 86(32.5%) cases of solid waste disposal(B09B). 41(16.6%) cases of separation(B01D) and 27(10.2%) of lime, magnesia, slag, cement and their composites(C04B).

Improvement of Image Processing Algorithm of High-Throughput Microscopy for Automated Counting of Asbestos Fibers (석면섬유 자동계수를 위한 고효율 현미경법의 영상처리 알고리즘 개선)

  • Cho, Myoung-Ock;Yoon, Seonghee;Han, Hwataik;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.15-19
    • /
    • 2015
  • We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.