• 제목/요약/키워드: as-cast microstructures

검색결과 86건 처리시간 0.02초

Microstructures and hardness of model niobium-based chromium-rich cast alloys

  • Berthod, Patrice;Ritouet-Leglise, Melissa
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.17-28
    • /
    • 2018
  • Niobium is a candidate base for new alloys devoted to applications at especially elevated temperatures. Elaborating and shaping niobium-based alloys by conventional foundry may lead to mechanically interesting microstructures. In this work a series of charges constituted of pure elements were subjected to high frequency induction melting in cold crucible to try obtaining cast highly refractory Nb-xCr and Nb-xCr-0.4 wt.%Calloys(x=27, 34 and 37 wt.%). Melting and solidification were successfully achieved. The as-cast microstructures of the obtained alloys were characterized by electron microscopy and X-ray diffraction and their hardness were specified by Vickers macro-indentation. The obtained as-cast microstructures are composed of a body centered cubic (bcc) niobium dendritic matrix and of an interdendritic eutectic compound involving the bcc Nb phase and a $NbCr_2$ Laves phase. The obtained alloys are hard to cut and particularly brittle at room temperature. Hardness is of a high level (higher than 600Hv) and is directly driven by the chromium content or the amount of {bcc Nb - $NbCr_2$} eutectic compound. Adding 0.4 wt.% of carbon did not lead to carbides but tends to increase hardness.

알루미늄 합금의 주조/단조 기술에 대한 기초연구 (The Basic Study on the Casting/Forging Technology of Aluminum Alloy)

  • 배원병;김영호;이영석;김맹수
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.62-67
    • /
    • 1998
  • An experimental study has been carried out to investigate casting process parameters which influence on the microstructures of cast preforms in casting/forging process of aluminum alloy. In the casting process, pouring temperature, pouring time, mold temperature, mold material, and, cooling method are selected as process parameters. With the cast preform, a forging test has been performed to compare mechanical properties of final products between casting/forging process and forging process. From the experimental results, low mold temperature and water cooling method are favorable for obtaining minute microstructures of cast preforms. Casting defects included in cast preforms. such as pores and shrinkage cavity, are eliminated by the forging process. And comparing cast/forged products with conventionally forged products, the former are almost as same as the latter in mechanical characteristics.

  • PDF

스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화 (Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting)

  • 이기락;나형용
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Ti-(44-54)at.%Al 열처리 주조합금의 미세조직과 인장특성에 관한 연구 (A Study on the Microstructures and Tensile Properties of Heat-Treated Cast Ti-(44-54)at.%Al Alloys)

  • 정재영
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.199-206
    • /
    • 2017
  • In this study, the variations of microstructures and tensile properties of Ti-(44-54)at.%Al binary alloys were investigated. The heat-treated microstructure depended greatly on their solidification structure and annealing temperature. We measured the variations of volume fractions of primary and secondary lamellar structure as a function of the heat treatment temperature in a Ti-47at.%Al alloy. The variation of ductility as a function of Al content was in good agreement with the change of fracture mode in the tensile fracture surface. It can be inferred that the variations of yield stress and hardness of ${\gamma}$ phase in a single ${\gamma}$-phase field region are enhanced by anti-site defects created by deviations from the stoichiometric composition. In a Ti-47at.%Al alloy within the (${\alpha}_2+{\gamma}$) two-phase field, the yield stress tended to be the maximum at a near equal volume fraction of lamellar and ${\gamma}$ grains. The ductility depended sensitively on the overall grain size and Al content. The calculation of fracture strain using Chan's model indicated that the change of ductility as a function of annealing temperature was primarily determined by the variations in the overall grain size and lamellar volume fraction.

주철의 재질에 미치는 각종 Steel scrap의 영향 (Effect of Various Steel Scrap on the Microstructures and Mechanical Properties of Ductile Cast Iron)

  • 김홍범;;한용남;곽희환;이종문;김찬규
    • 자원리싸이클링
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 2000
  • Zn을 많이 함유하는 銅scrap(자동차용강판, Zn표면처리강판 등)을 이용하여 구상흑연주철을 제조한 경우 구상화가 제대로 이루어 지지 않았다. Sb을 많이 함유하는 銅scrap을 이용하여 구상흑연주칠을 제조한 경우에는 기지 층의 퍼얼라이트량이 증가하였다. 퍼얼라이트량이 증가하면 인장강도 및 경도는 증가하지만 연산율은 감소하였다. Mn, Cr을 많이 함유한 銅scrap(기계구조용강판, 가단주철)을 이용하여 구상흑연주출을 제조한 경우에는 피얼라이트량이 증가하였으며, 인장강도 및 경도도 증가하였다.

  • PDF

쌍롤 주조법에 의해 제조한 알루미늄 합금의 미세조직 (Microstructures of Twin Roll Cast Aluminum Alloys)

  • 박종우;김희수;백남익
    • 한국주조공학회지
    • /
    • 제16권2호
    • /
    • pp.149-157
    • /
    • 1996
  • Several aluminum based alloys were fabricated by a twin roll strip casting mill. As-cast microstructures and microsegregations of these aluminum alloys were investigated by means of optical microscope, scanning electron microscope and electron probe micro analysis. Clear distinction on microsegregation among the alloy systems was observed, that is, A1235 and A8011 alloys showed diffused segregation in the middle of the strip, while A3003 and A5086 alloys revealed a centerline segregation consisted of lamellar structure. Above center line segregation was resulted from enrichment of the alloying elements such as Mn, Fe, Cu, Si and eutictic reaction in central region of the alloy strip.

  • PDF

Strip-cast 조건이 Nd-Fe-B 합금의 미세조직 형성에 미치는 영향 (Effect of Strip-cast Conditions on the Formation of Microstructures in Nd-Fe-B alloys)

  • 이대훈;장태석;김동환;김승호
    • 한국자기학회지
    • /
    • 제12권1호
    • /
    • pp.34-40
    • /
    • 2002
  • 고에너지 Nd-Fe-B 소결자석 제조용 strip-cast 합금의 미세조직 개선을 위하여, Nd-Fe-B 합금을 다양한 조건하에서 strip casting법으로 제조한 후, 제조 조건이 상 형성, 상 분포 및 조직 형성에 미치는 영향을 조사하였다. 냉각속도 즉, wheel speed가 5 m/s 이하일 때 고특성 소결자석 제조에 적합한 미세조직을 갖는 Strip 합금들을 제조할 수 있었으며, 이때의 한계 조성은 Nd$_{14}$Fe$_{79}$B$_{7}$ 정도로 추정되었다. 또한 조성에 상관없이 5 m/s 이하에서는 strip 표면에 수직한 방향으로 <001> preferred orientation이 발생하였는데, 이것은 궁극적으로 합금의 분쇄.성형시 결정립 배향도 향상에 유리하게 작용할 것으로 보인다. 한편 냉각속도가 증가할수록 Nd$_2$Fe$_{14}$B 결정립의 미세화로 인하여 보자력이 증가하였으나, Nd 함량이 감소할 경우 $\alpha$-Fe 정출의 증가로 인하여 보자력이 감소하였다.

다합금 백주철의 미끄럼 마모특성에 미치는 코발트 첨가의 영향 (The Effects of Cobalt Addition on Sliding Wear Properties of Multi-component White Cast Iron)

  • 이한영
    • 한국주조공학회지
    • /
    • 제24권4호
    • /
    • pp.202-208
    • /
    • 2004
  • Effects of Co addition on sliding wear properties of multi-component white cast iron were investigated. The microstructures of multi-component white cast iron containing from 0%Co to 10%Co exhibited little difference. However, the hardness increased with an increase of the Co content. Increasing the Co content, wear properties were improved and the iron oxide on worn surface was increased in the low sliding speed range of the steady-state wear region. Hence, Co addition was effective to improve the wear properties of multi-component white cast iron by accelerating the corrosive wear as well as the enhancement effect of hardness.

분사주조공정에 의하여 제조된 Al-Pb 과편정합금의 조직특성 (Microstructural Characteristics of Al-Pb Hyper-Monotectic Alloys Produced by Spray Cast Deposition Process)

  • 배차헌;정해용;박흥일;김창업;이성렬
    • 한국주조공학회지
    • /
    • 제12권4호
    • /
    • pp.346-354
    • /
    • 1992
  • In Al-Pb monotectic alloys Pb particles are difficult to uniformly distribute over the Al matrix because of the gravity segregation of pb element. Therefore the effects of centrifugally spray casting process on microstructures and distributions of Pb particle were investigated. As the preform thickened the sine of Pb particle became larger, the amount of porosity became lower and microstructures showed the change from spray-deposition microstructures in the lower part of the preform to spray-casting microstructures in the upper part of it. The size of Pb particles, amount of porosity and splat layer boundaries in hot forged preform showed still less than of as-deposited preform.

  • PDF

Ti-Al 금속간화합물의 미세조직 및 기계적 성질에 미치는 제3원소의 영향 (Effect of Third Elements on the Microstructures and Mechanical Properties of Ti-Al Intermetallic Compounds)

  • 최창우;홍준표
    • 한국주조공학회지
    • /
    • 제12권2호
    • /
    • pp.139-148
    • /
    • 1992
  • The mechanical properties of Ti-Al intermetallic compounds which contain Mn, Zr, or Cr as the third element have been evaluated by means of hardness and compression tests. Microstructures have also been examined using an optical microscope. The cast structures of Ti-Al alloys are coarsened and the lamellar volume fraction is increased by the additions of Mn or V, but the cast structures are refined by the addition of Zr. Hardness tests of room temperature and compression tests at $600^{\circ}C$ showed that the mechanical properties of Ti-Al alloys were mainly dependent on the volume fraction of the ${\alpha}_2$ phase, grain size and solid solution hardening. However according to the compression test at $1000^{\circ}C$, the yield strength of Ti-Al alloys decreased with an increase in Mn or Cr content, but increased with an increase in the Zr content.

  • PDF