• Title/Summary/Keyword: artificial wastewater

Search Result 157, Processing Time 0.024 seconds

Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus

  • Shin Kwang-Soo;Kim Young Hwan;Lim Jong-Soon
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2005
  • The production of manganese peroxidase (MnP) by Irpex lacteus, purified to electrophoretic homogeneity by acetone precipitation, HiPrep Q and HiPrep Sephacryl S-200 chromatography, was shown to correlate with the decolorization of textile industry wastewater. The MnP was purified 11.0-fold, with an overall yield of $24.3\%$. The molecular mass of the native enzyme, as determined by gel filtration chromatography, was about 53 kDa. The enzyme was shown to have a molecular mass of 53.2 and 38.3 kDa on SDS-PAGE and MALDI-TOF mass spectrometry, respectively, and an isoelectric point of about 3.7. The enzyme was optimally active at pH 6.0 and between 30 and $40^{\circ}C$. The enzyme efficiently catalyzed the decolorization of various artificial dyes and oxidized Mn (II) to Mn (III) in the presence of $H_2O_2$. The absorption spectrum of the enzyme exhibited maxima at 407, 500, and 640 nm. The amino acid sequence of the three tryptic peptides was analyzed by ESI Q- TOF MS/MS spectrometry, and showed low similarity to those of the extracellular peroxidases of other white-rot basidiomycetes.

Electrosorption Removal of the Zinc Ions from Aqueous Solution on an Artificial Electrode based in the Banana Wastes

  • Benakouche, Houda;Bounoughaz, Moussa
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2017
  • The valorization of domestic wastes becomes a very important research axis that can reduce the energy consumption and protect our environment. The objective of this study is to remove zinc ions from wastewater by using banana peels after their activation as sensor in the working electrode for an environmental application. Banana peels were dried, crushed and treated with sulfuric acid then mixed with polyaniline to improve their electrical conductivity. Cyclic voltammetry and chronoamperometry were used for electrochemistry tests. The obtained voltammogramms at well optimized conditions of applied potential of -1.3 V/SCE and initial zinc concentration of 0.2M during 2 hours of electrolysis, showed the reduction peak of the zinc at a potential of -1.14 V/SCE, which confirmed the activity of this electrode. The modeling of experimental data revealed that the adsorption was fitted by the Langmuir isotherm with a maximal adsorption capacity of 3.4188 mg/g. Changes in the structure of the powder after the electrosorption was noticed by SEM and EDX. Finally, the dosage of the electrolytic solution showed a diminution of the zinc concentration with yield of 99.99%.

Solution to promote the Circular Economy in Agriculture in Vietnam for Sustainable Development

  • Thi Huyen Tran;Hoang Tuan Nguyen;Quoc Cuong Nguyen
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.276-283
    • /
    • 2024
  • Currently, the overall tendency for green and sustainable economic development is creating a circular economy. In actuality, agricultural output is currently benefiting greatly from the growth of the circular economy. The creation of a circular economy helps address resource scarcity, save the environment, combat climate change, and increase economic efficiency. Vietnam's economy can grow quickly and sustainably by shifting to a circular economy production model. Comparing prior growth techniques to the digital age and implementing circular economic development connected with high technology will be a fantastic opportunity to boost growth efficiency. In actuality, Vietnam currently has a large number of agricultural circular economy models. These are models: Creating and using gas from waste and wastewater in livestock and farming; model combining cultivation, livestock, and aquaculture; agro-forestry model; garden-forest model; Circular model using agricultural by-products as a catalyst or creating other valuable products; model of moderation, linked to reducing the use of growth hormones, veterinary medications, pesticides, and artificial fertilizers in agriculture and animal husbandry. Unfortunately, there have been few studies and applications of the aforementioned models, which has made it difficult to build the agricultural sector sustainably. In this paper, we outline the current situation and propose solutions to develop a circular economy model in agriculture in Vietnam for sustainable development.

Behavior of heavy metals in the surface waters of the Lake Shihwa and its tributaries (시화호와 주변 하천 표층수중의 중금속 거동 특성)

  • Kim Kyung Tae;Lee Soo Hyung;Kim Eun Soo;Cho Sung Rok;Park Chung Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.51-67
    • /
    • 2002
  • In order to understand behaviors of heavy metals around the artificial Lake Shihwa in the vicinity of Kyunggi Bay in Korea in relation with huge environmental changes due to construction of huge artificial lake, water samples were collected from Lake Shihwa and its tributaries from 1996 to 1998 and analyzed. Due to extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the Shihwa and its tributaries have been polluted in waters with various heavy metals. The enrichment factors of particulate heavy metals in water of streams and storm sewers were very high. All of the heavy metals observed in the waters showed relatively high temporal and spatial variations. In surface waters of the lake during the desalination after the dike establishment, spatial distributions of heavy metal concentrations were mainly controlled by various biogeochemical factors as well as input of industrial and municipal wastewaters, while, physical mixing was minor factor Pb and Co showed a strong affinity to particle phase, however the affinity to dissolved phase was dominated in Ni, Cu and Cd. Water quality of the artificial Lake Shihwa has been deteriorated by direct discharge of untreated wastewater and heavy metals have been accumulated in the lake system. Therefore, luther environmental improvement plan should be programmed subsequently.

  • PDF

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.

Treatment of Nutrients Using the Upflow Vegetated Filter (상향류식 수초여과지를 이용한 영양염류처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1287-1292
    • /
    • 2006
  • Constructed wetlands are well known as highly efficient system to treat wastewater from different sources. Among the constructed wetlands, upflow types of constructed wetlands have become a common selection of wastewater during the last decade. We conducted a pilot scale study at peen house on treating potential of nutrients by upflow vegetated filter(UVF) pilot wetland which was combined with hydrodynamic separator and used the cattail plant(Typha angustifolia), and operated with artificial nutrients influent. This study evaluate the performances of upflow vegetated fille, in removal of nutrients. The objectives of this study were two-fold: (i) to evaluate the nutrients removal performance of pilot-scale upflow vegetated filter, filled with a mixture of perlite and soil media and planted with cattails and (ii) to design of scale-up upflow vegetated filter using Froude number. Results indicated that, under the condition of the ranges of hydraulic surface load rate were $22.7{\pm}9.6\;m^3/m^2/day$, the average removal of $COD_{Mn}$, and TN, TP were 57.5%, 40.0% and 41.5%, respectively. Computational fluid dynamics, FLUENT 6.0 program was used to predict the distribution of velocity in UVF and hydrodynamic separator. Full scale UVF was designed using the Froude number scale-up method that was assumed geomertic similarity between model and prototype. Result shows that the UVF with 3 m diameter has capacity of design sewage flowrate 75 $m^3/day$.

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

Development of a Method for Determining the Instream Flow and Its Application: II. Application and Result (하천유지유량 결정 방법의 개발 및 적용: II. 적용 및 결과)

  • 김규호;김선미
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.185-202
    • /
    • 1996
  • The newly-developed method for estimating the instream flow, proposed by the authors (1996), was applied to the main channel reach of the Kum River basin in Korea. Performance of the suggested method was tested through the evaluations of the required flow, instream flow, and river-management flow which were estimated at five main reaches with each representative station. The mean drought flow was used as the object flow to evaluate the minimum instream flow for the mid- and large-size rivers. Water quality prediction by using the QUAL2E model was made for both cases that the planned wastewater treatment facilities may and may not be constructed. The required flow for the fish habitat was evaluated for 9 representative fish species. The instream flows required for the riverine aesthetics at Kong-ju and Puyo scenary points, for river navigation at natural channel conditions, and for current and potential recreation activities were evaluated, respectively. The instream flows required for other items are not quantified. On the whole, it is shown that the instream flow to maintain the natural riverine functions such as fish habitat, and riverine aesthetics govern the upstream reaches of the Kum River, and the artificial riverine functions such as conservation of water quality, navigation and recreations govern the middle and downstream reaches. Especially, it is found that the instream flow requirement depends largely upon the construction of wastewater treatment facilities at the Kum River basin.

  • PDF

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.