DOI QR코드

DOI QR Code

Electrosorption Removal of the Zinc Ions from Aqueous Solution on an Artificial Electrode based in the Banana Wastes

  • Benakouche, Houda (Food Technology Laboratory, Faculty of Engineering Sciences, University of M'Hamed Bougara) ;
  • Bounoughaz, Moussa (Laboratory of treatment and formatting of polymers, Faculty of Engineering Sciences, University of M'Hamed Bougara)
  • Received : 2016.11.24
  • Accepted : 2017.01.26
  • Published : 2017.03.31

Abstract

The valorization of domestic wastes becomes a very important research axis that can reduce the energy consumption and protect our environment. The objective of this study is to remove zinc ions from wastewater by using banana peels after their activation as sensor in the working electrode for an environmental application. Banana peels were dried, crushed and treated with sulfuric acid then mixed with polyaniline to improve their electrical conductivity. Cyclic voltammetry and chronoamperometry were used for electrochemistry tests. The obtained voltammogramms at well optimized conditions of applied potential of -1.3 V/SCE and initial zinc concentration of 0.2M during 2 hours of electrolysis, showed the reduction peak of the zinc at a potential of -1.14 V/SCE, which confirmed the activity of this electrode. The modeling of experimental data revealed that the adsorption was fitted by the Langmuir isotherm with a maximal adsorption capacity of 3.4188 mg/g. Changes in the structure of the powder after the electrosorption was noticed by SEM and EDX. Finally, the dosage of the electrolytic solution showed a diminution of the zinc concentration with yield of 99.99%.

Keywords

References

  1. G.Z. Kyzas, P.L. Siafaka, G.E. Pavlidou, J.K. Chrissafis and N.D. Bikiaris, Chem. Eng. J., 2015, 259, 438-448. https://doi.org/10.1016/j.cej.2014.08.019
  2. H. Bagheri, A. Afkhami , H. Khoshsafar, M. Rezaei and A. Shirzadmehr, Sens. Actuators. B., 2013, 186, 451-460. https://doi.org/10.1016/j.snb.2013.06.051
  3. E.S. Abdel-Halim and S.S. Al-Deyab, Carbohydrate Polymers., 2012, 87, 1863-1868. https://doi.org/10.1016/j.carbpol.2011.10.028
  4. C. Yang, J. Wang, M. Lei, G. Xie, G. Zeng and S. Luo, J. Environ. Sci., 2010, 22(5), 675-680. https://doi.org/10.1016/S1001-0742(09)60162-5
  5. A.K. Bhattacharya, S.N. Mandal and S.K. Das, Chem. Eng. J., 2006, 123(1), 43-51. https://doi.org/10.1016/j.cej.2006.06.012
  6. P.C. Mishra and R.K. Patel, J. Hazard. Mater., 2009, 168(1), 319-325. https://doi.org/10.1016/j.jhazmat.2009.02.026
  7. H. Cesur and N. Balkaya, Chem. Eng. J., 2007, 131(1), 203-208. https://doi.org/10.1016/j.cej.2006.11.010
  8. D. Lu, Q. Cao, X. Li , X. Cao, F. Luo and W. Shao, Hydrometallurgy., 2009, 95(1), 145-152. https://doi.org/10.1016/j.hydromet.2008.05.008
  9. H. Yaacoubi, O. Zidani, M. Mouflih, M. Gourai and S. Sebti, Procedia Engineering., 2014, 83, 386-393. https://doi.org/10.1016/j.proeng.2014.09.039
  10. A.E. Martins, M.S. Pereira, A.O. Jorgetto, M.A.U. Martines, R.I.V. Silva, M.J. Saeki and G.R. Castro, Appl. Surf. Sci., 2013, 276, 24-30. https://doi.org/10.1016/j.apsusc.2013.02.096
  11. T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li and T.V. Nguyen, Bioresour. Technol., 2013, 148, 574-585. https://doi.org/10.1016/j.biortech.2013.08.124
  12. J.Q. Albarelli, R.B. Rabelo, D.T. Santos, M.M. Beppu and M.A.A. Meireles, J. Supercrit. Fluids., 2011, 58(3), 343-351. https://doi.org/10.1016/j.supflu.2011.07.014
  13. J. Anwara, U. Shafique, W-uz-. Zaman, M. Salman, A. Dar and S. Anwar, Bioresour.Technol.,2010, 101(6), 1752-1755. https://doi.org/10.1016/j.biortech.2009.10.021
  14. A. Demirbas, J. Hazard.Mater., 2008, 157(2), 220-229. https://doi.org/10.1016/j.jhazmat.2008.01.024
  15. D. Sud, G. Mahajan and M.P. Kaur, Bioresour. Technol. 2008, 99(14), 6017-6027. https://doi.org/10.1016/j.biortech.2007.11.064
  16. X. Li, Y. Tang, X. Cao, D. Lu, F. Luo and W. Shao, Colloid. Surface A, 2008, 317, 512-521. https://doi.org/10.1016/j.colsurfa.2007.11.031
  17. Y. Xu, J.W. Zondlo, H.O. Finklea and A. Brennsteiner, Fuel Process.Technol., 2000, 68(3), 189-208. https://doi.org/10.1016/S0378-3820(00)00114-4
  18. K. Sharma, Mayes, R.T., Kiggans Jr, J.O., S. Yiacoumi, J. Gabitto, D.W. DePaoli, S. Dai and C. Tsouris, Sep. Purif. Technol., 2013, 116, 206-213. https://doi.org/10.1016/j.seppur.2013.05.038
  19. F.N. Acar and Z. Eren, J. Hazad. Mater. B., 2006, 137(2), 909-914. https://doi.org/10.1016/j.jhazmat.2006.03.014
  20. M. Omraei , H. Esfandian , R. Katal and M. Ghorbani, Desalination, 2011, 271(1), 248-256. https://doi.org/10.1016/j.desal.2010.12.038
  21. H.Aksas, Doctorate thesis, Process Engineering, University of Boumerdes, Algeria.(in French), 2013.
  22. L. Amirouche, Magister memory (in French), Chemistry, University of Tizi-Ouzou, Algeria, 2011.
  23. J.R. Memon., S.Q. Memon, M.I. Bhanger, G.Z. Memon, A. El-Turki, and G.C. Allen, Colloids Surf., B., 2008, 66, 260-265. https://doi.org/10.1016/j.colsurfb.2008.07.001
  24. S.W. Jyotsna and H.K. Ankeeta, Eur. J. Exp. Biol., 2014, 4(5), 10-15.
  25. S.B. Nagarajaiah and J. Prakash, As. J. Food Ag-Ind., 2011, 4(01), 31-46.
  26. N. Ait Ahmed, M. Eyraud, H. Hammache, F. Vacandio, S. Sam, N. Gabouze, P. Knauth, K. Pelzer and T. Djenizian, Electrochim. Acta., 2013, 94, 238-244. https://doi.org/10.1016/j.electacta.2013.01.103
  27. J. Torrent-Burgués and E. Guaus, Portugaliae Electrochimica Acta, 2003, 21(2), 179-189. https://doi.org/10.4152/pea.200302179
  28. D.S. Patil, S.A. Pawar, S.K. Patil, P.P. Salavi, S.S. Kolekar, R.S.Devan, Y.R. Ma, J. Kim, C.J.H. Shin and P.S. Patil, J. Alloys. Compd., 2015, 646, 1089-1095. https://doi.org/10.1016/j.jallcom.2015.06.190
  29. O. Aaboubi, J. Douglade, X. Abenaqui, R. Boumedmed and J. VonHoff, Electrochim. Acta., 2011, 56(23), 7885-7889. https://doi.org/10.1016/j.electacta.2011.05.121
  30. S. Rangabhashiyam, N. Anu, M.S. GiriNandagopal and N. Selvaraju, J.Environ.Chem.Eng., 2014, 2(1), 398-414. https://doi.org/10.1016/j.jece.2014.01.014
  31. S. Liang, X.Y. Guo, N.C. Feng and Q.H. Tian, Trans. Nonferrous Met. Soc. China., 2010, 20, s187-s191. https://doi.org/10.1016/S1003-6326(10)60037-4
  32. I. Langmuir, J. Am. Chem. Soc., 1916, 38, 2221-2295. https://doi.org/10.1021/ja02268a002
  33. A.O. Dada, A.P. Olalekan, A.M. Olatunya and O. Dada, J. Appl. Chem., 2012, 3(1), 38-45.
  34. S.O. Lesmana, N. Febriana, F. E. Soetaredjo, J. Sunarso and S. Ismadji, Biochem.Eng. J., 2009, 44(1), 19-41. https://doi.org/10.1016/j.bej.2008.12.009
  35. R.K. Gautam, A. Mudhoo, G. Lofrano and M. C. Chattopadhyaya, J.Environ.Chem.Eng., 2014, 2(1), 239-259. https://doi.org/10.1016/j.jece.2013.12.019
  36. K. Li, D. Guo, F. Lin, Y. Wei, W. Liu and Y. Kong, Electrochim. Acta., 2015, 166, 47-53. https://doi.org/10.1016/j.electacta.2015.02.120
  37. F.V. Pereira, L.V.A. Gurgel, and L.F. Gil, J. Hazard. Mater., 2010, 176(1), 856-863. https://doi.org/10.1016/j.jhazmat.2009.11.115
  38. McLaughlan, R.G., Hossain, S.M.G., & Al-Mashaqbeh, O.A., J. Environ. Chem. Eng., 2015, 3(3), 1539-1545. https://doi.org/10.1016/j.jece.2015.05.022