• Title/Summary/Keyword: artificial wastewater

Search Result 157, Processing Time 0.026 seconds

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Suggestions for Ecological Stream Restoration (생태하천 복원 방안)

  • Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Urban streams have been severely degraded with wastewater and concrete structure over a prolonged period. The Chonggyecheon Restoration Project recovered a stream in the downtown Seoul with landscaping, plantings and bridges after the cover concrete and elevated asphalt road were removed. The project has been criticized partly because it is not an ecological restoration but rather the development of an urban park with an unnaturally straight flowing stream, artificial building structures, and artificial water pumping from the Han River. Nevertheless, the public have praised the project and almost 100,000 visitors per day come to see the reeds, catfish, and ducks. The stream restoration project is attractive to central and regional government decision makers because it increases the public concern of landscape amenity. Several projects such as Sanjichon and Kaeumjungchon are on going and proposed. These projects have a common and different respect in scope and procedure. The Chonggyecheon project in the process of environmental impact assessment (EIA) and prior environmental review system (PERS) reviewed the environmental impacts before development. Kaeumjungchon in the PERS and Sanjichon without EIA and PERS are reviewed. EIA and PERS systems contribute to checking the ecological sustainability of the restoration projects. A stream restoration project is a very complex task, so an integrated approach from plan to project is needed for ecologically sound restoration. Ecological stream restoration requires 1) an assessment of the entire stream ecosystem 2) establishing an ecologically sound management system of the stream reflecting not only benefits for people but also flora and fauna; 3) developing the site-specific design criteria and construction techniques including habitat restoration, flood plains conservation, and fluvial management; 4) considering the stream watershed in land use plan, EIA, PERS, and strategic environmental assessment (SEA). Additionally the process needs to develop the methodologies to enhance stakeholder's participation during planning, construction, and monitoring.

Arsenic removal from artificial arsenic water using CaAl-monosulfate and CaAl-ettringite (CaAl-monosulfate와 CaAl-ettringite를 이용한 인공비소폐수의 비소 제거 연구)

  • Shim, Jae-Ho;Kim, Ki-Baek;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • The objective of this study is to remove arsenate from artificially contaminated wastewater using CaAl-ettringite and CaAl-monosulfate which were synthesized in laboratory. The study was carried on the basis of solidification/stabilization of waste using cement. Monosulfate and ettringite are constituents of cement paste. The CaAl-ettringite has a chemical formula of $Ca_6Al_2O_6(SO_4)_3{\cdot}32H_2O$ and has a needle like morphology. Whereas CaAl-monosulfate $Ca_4Al_2O_6(SO_4){\cdot}12H_2O$ has layered double hydroxide structure (LDH) in which the mainlayer consists of Ca and Al and S as interlayer. Ettringite and monosulfate were synthesized by reaction of tricalcium aluminate and gypsum and hydrating this mixture at elevated temperature. The synthesized mineral were characterized by PXRD and FESEM to ensure purity. It was found that concentrations of As(V) in contaminated water were reduced from initial concentration of 1.335 mmol/L to 0.054 mmol/L and 0.300 mmol/L by CaAl-monosulfate and CaAl-ettringite respectively. The post experimental results of PXRD and FESEM analysis indicate that arsenate removal was by ion exchange.

Microalgal Growth and Nutrient Removal in a Lake, a Stream and the Outflow of a Wastewater Treatment System (호수수, 하천수와 하수처리수에서 미세조류 증식 특성 및 영양 염류 제거 효과)

  • Chang, In-Ho;Joung, Yo-Chan;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • The possibility of nutrient removal during Scenedesmus sp. growth in Lake Paldang, Geongan cheon stream, and the outflow from a wastewater treatment system was examined. Scenedesmus sp. grew well in Lake Paldang water when total nitrogen (TN) and total phosphorus (TP) values were 1.9 and 0.02 mg $L^{-1}$, respectively, and 50% of the nutrients were removed. In Geongan cheon stream, the TN and TP was 3.0 mg $L^{-1}$ and 0.09 mg $L^{-1}$, respectively, chlorophyll-${\alpha}$ reached a maximum of 239~259 $m^{-3}$, and 50% of the nutrients were removed. In the wastewater treatment outflow, where Scenedesmus sp. already existed, the organism grew well without inoculation. Scenedesmus sp. can grow with proper inoculation and physical turbulence in natural waters, such as lake and stream water, and nutrients can be eliminated as phytoplankton growth occurs.

Development of a Biosensor Using Electrochemically-Active Bacteria [EAB] for Measurements of BOD [Biochemical Oxygen Demand] (전기화학적 활성 미생물을 이용한 BOD 측정용 바이오센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Kwon, Kil-Koang;Jeong, Bong-Geun;Hong, Seok-Won;Choi, Yong-Su;Kim, Hyung-Joo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • A biosensor using electrochemically-active bacteria (EAB) enriched in three-electrode electrochemical cell, was developed for the determination of biochemical oxygen demand (BOD) in wastewater. In the electrochemical cell, the positively poised working electrode with applying a potential of 0.7 V was used as an electron acceptor for the EAB. The experimental results using artificial and raw wastewater showed that the current pattern generated by the biosensor and its Coulombic yield were proportional to the concentration of organic matter in wastewater. The correlation coefficients of BOD vs Coulombic yield and $BOD_5$ vs Coulombic yield were 0.99 and 0.98, respectively. These results indicate that the biosensor enriched with the EAB capable of transferring electrons directly toward the electrode can be utilized as a water-quality monitoring system due to a quick and accurate response.

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water (Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발)

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • In this study, we have developed a microbe-carrier that combined Desulfovibrio desulfuricans and zeolite for removal of Zn and As in contaminated seawater. Desulfovibrio desulfuricans, one of the sulfate-reducing bacteria (SRB) microorganism was exhibited stable growth characteristics in highly salted water and strong resistance to Zn and As contaminated seawater. Moreover, zeolites are one of the most useful carrier to remove heavy metals from wastewaters. The results showed that SRB immobilized zeolite carrier can enhance removal ratio of Zn and As. In addition, heavy metals tended to be better removed in medium at conditions of $37^{\circ}C$. In case of heavy metal concentration, they were effectively removed ranging from 50 to 100 ppm. These results show that SRB-zeolite carriers hold great potential to remove cationic heavy metal species from industrial wastewater in marine environment.

Activity of Chlorelaa vulgaris Associated by Escherichia coli W3110 on Removal of Total Organic Carbon in Continuous River Water Flow System

  • Kong, Surk-Key;Nakajima Toshiuki
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.195-199
    • /
    • 2002
  • We investigated the association of Chlorella vulgaris and E. coli W9110 in removal of total organic carbon with the lab-scaled continuous river water flow system (CRWFS). Artificial wastewater was applied at two levels of organic carbon concentration; 1,335 $mg{\cdot}l^{-1}$ in the treatment (T)-1 and 267 $mg{\cdot}l^{-1}$ in T-2. The highest densities of C. vulgaris were $8.3{\times10^6\;cells{\cdot}ml^{-1}$ in T-1 and $6.9{\times}10^6\;cells{\cdot}ml^{-1}$ in T-2. The maximum densities of E. coli W3110 were $2.0{\times}10^8$ clony forming unit (CFU)${\cdot}ml^{-1}$ in T-1 and $3.9{\times}10^8\;CFU{\cdot}ml^{-1}$ in T-2. The densities increased during the first 11 days in T-q and 4 days in T-2, and decreased rapidly till 35th day, then increased slightly afterwards. This trend was prominent in T-2. It was inplied that wider range of nutrients was required in the growth of heterotrophic bacteria in T-2 than in T-1. The algal biomass should be increased effectively for the successful removal of organic carbon.

On-Line Monitoring of Low Biochemical Oxygen Demand Through Continuous Operation of a Mediator-Less Microbial Fuel Cell

  • MOON, HYUN-SOO;CHANG, IN-SEO;JANG, JAE-KYUNG;KIM, KYUNG-SHIK;LEE, JI-YOUNG;LOVITT, ROBERT W.;KIM, BYUNG-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.192-196
    • /
    • 2005
  • Abstract Oligotrophic microbial fuel cells (MFCs) were tested for the continuous monitoring of low biochemical oxygen demand (BOD) by using artificial wastewater, containing glucose and glutamate, as check solution. Ten times diluted trace mineral solution was used to minimize the background current level, which is generated from the oxidation of nitrilotriacetate used as a chelating agent. The feeding rate of 0.53 ml/min could increase the sensitivity from 0.16 to 0.43 ${\mu}$A/(mg BOD/l) at 0.15 ml/min. The dynamic linear range of the calibration curve was between 2.0 and 10.0 mg BOD/l, and the response time to the change of 2 mg BOD/l was about 60 min. The current signal from an oligotroph-type MFCs increased with the increase in salts concentration, and the salt effect could be eliminated by 50 mM phosphate buffer.

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.