The Journal of the Korea institute of electronic communication sciences
/
v.17
no.4
/
pp.633-640
/
2022
As service robots are applied to various fields, interest in an image processing processor that can perform an image processing algorithm quickly and accurately suitable for each task is increasing. This paper introduces an image processing processor design method applicable to robots. The proposed processor consists of an AGX board, FPGA board, LiDAR-Vision board, and Backplane board. It enables the operation of CPU, GPU, and FPGA. The proposed method is verified through simulation experiments.
Proceedings of the Korean Institute of Building Construction Conference
/
2021.11a
/
pp.221-222
/
2021
Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.
A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.
Journal of the Korea Society of Computer and Information
/
v.24
no.8
/
pp.95-103
/
2019
According to the Statistics Korea in 2017, the 10 leading causes of death contain a cardiac disorder disease, self-injury. In terms of these diseases, urgent assistance is highly required when people do not move for certain period of time. We propose an unusual event detection algorithm to identify abnormal user behaviors using dust, vision and activity sensors in their houses. Vision sensors can detect personalized activity behaviors within the CCTV range in the house in their lives. The pattern algorithm using the dust sensors classifies user movements or dust-generated daily behaviors in indoor areas. The accelerometer sensor in the smartphone is suitable to identify activity behaviors of the mobile users. We evaluated the proposed pattern algorithms and the fusion method in the scenarios.
Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
International Journal of Computer Science & Network Security
/
v.23
no.5
/
pp.73-88
/
2023
Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.3
/
pp.89-100
/
2023
Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.
Objectives: To build basic clinical data for developing an artificial intelligence algorithm for Korean herbal prescriptions for anxiety, depression, anger, and insomnia. Methods: Subjects were recruited among those who reported mild or more severe symptoms of anxiety, depression, anger, and insomnia (Anxiety: State-Trait Anxiety Inventory≥40, Depression: Beck Depression Inventory≥14, Anger: State-Trait Anxiety Inventory≥16, Insomnia: Insomnia Severity Index≥8). Clinical observation items including basic medical information and symptoms were collected from them. These data were then analyzed by experts in Hyungsang medicine, Sasang constitutional medicine, and Sanghan-Geumgwe medicine. Results and Conclusions: Experts of the three societies presented key clinical data and recommended prescriptions. Results of this study can be used as basic data for developing an artificial intelligence algorithm for Korean herbal prescriptions in the future.
Proceedings of the Korean Institute of Building Construction Conference
/
2022.04a
/
pp.225-226
/
2022
The construction industry, which has a labour-intensive and conservative nature, is exclusive to adopt new technologies. However, the construction industry is viably introducing the 4th Industrial Revolution technologies represented by artificial intelligence, Internet of Things, robotics and unmanned transportation to promote change into a smart industry. An image-based artificial intelligence technology is a field of computer vision technology that refers to machines mimicking human visual recognition of objects from pictures or videos. The purpose of this article is to explore image-based artificial intelligence technologies which would be able to apply to the construction sites. In this study, we show two examples which is one for a construction waste classification model and another for cast in-situ anchor bolts defection detection model. Image-based intelligence technologies would be used for various measurement, classification, and detection works that occur in the construction projects.
In mathematics, the concept of convolution is widely used. The convolution operation is required for understanding computer vision and deep learning in artificial intelligence. Therefore, it is vital for this concept to be explained in college mathematics education. In this paper, we present our new teaching and learning materials on convolution available for engineering mathematics. We provide the knowledge and applications on convolution with Python-based code, and introduce Convolutional Neural Network (CNN) used for image classification as an example. These materials can be utilized in class for the teaching of convolution and help students have a good understanding of the related knowledge in artificial intelligence.
Journal of the Korea Society of Computer and Information
/
v.28
no.9
/
pp.63-71
/
2023
Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.