• Title/Summary/Keyword: artificial slope

Search Result 263, Processing Time 0.027 seconds

Development of Seismic Fragility Curves for Slopes Using ANN-based Response Surface (인공신경망 기반의 응답면 기법을 이용한 사면의 지진에 대한 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.31-42
    • /
    • 2016
  • Usually the seismic stability analysis of slope uses the pseudostatic analysis considering the inertial force by the earthquake as a static load. Geostructures such as slope include the uncertainty of soil properties. Therefore, it is necessary to consider probabilistic method for stability analysis. In this study, the probabilistic stability analysis of slope considering the uncertainty of soil properties has been performed. The fragility curve that represents the probability of exceeding limit state of slope as a function of the ground motion has been established. The Monte Carlo Simulation (MCS) has been implemented to perform the probabilistic stability analysis of slope with pseudostatic analysis. A procedure to develop the fragility curve by the pseudostatic horizontal acceleration has been presented by calculating the probability of failure based on the Artificial Neural Network (ANN) based response surface technique that reduces the required time of MCS. The results showed that the proposed method can get the fragility curve that is similar to the direct MCS-based fragility curve, and can be efficiently used to reduce the analysis time.

Studies on the Tree Growth and Soil Environmental Characteristics in the Planting Zone on the Back Slope of Dam (댐체 비탈면 녹화지역의 수목 생장 및 토양환경 특성에 관한 연구)

  • Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.3
    • /
    • pp.85-98
    • /
    • 2021
  • In this study, the characteristics of tree growth and soil environment were analyzed at 5 sites that had been planted on the back slope of dam for more than 15 years in Korea. First, as a result of investigating the growth of 15 trees planted on the back slope of the dam, the average height was 10.6m, diameter at roots was 27.3cm, and DBH was 22.9cm, showing good growth status of most of the trees. In particular, the growth levels of pine, hackberry, and oak were similar or better than those of general forests and artificial ground. As a result of excavating and investigating the roots of trees, horizontal roots grew well in the left and right directions of the back slope of the dam, and the growth of vertical roots was insufficient. Currently, the roots of trees do not directly affect dam safety, but they may continue to grow in the long term and interfere with dam management. Second, the physicochemical characteristics of the soil on the back slope of dam were generally above the intermediate level in terms of landscape design standards, and were similar to those of the domestic forest soil. Therefore, although it was judged to be suitable for plant growth, isolation of the site, soil acidification, and nutrient imbalance may affect tree growth and forest health in the long term. Through this study, it was possible to confirm the potential and applicability of planting area on the back slope of dam as an ecological base. Continuous monitoring is required for safety management and ecological value of dams in the future, and through this, it will be possible to secure the feasibility of planting trees on the slopes of new or existing dams and improving management.

A Study of Characteristic of Friction Angles between Sand and Artificial Rock Interface by Direct Shear Test (직접전단시험에 의한 모래와 인공암석 경계면의 마찰각 특성 연구)

  • Yang, Hong-Suk;Lee, Byok-Kyu;Jang, Seung-Jin;Lee, Su-Gon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.65-73
    • /
    • 2012
  • Soil-rock interface, mainly founded in Granite region of Korea, is known as one of the important factor of the slope failure at the rainfall due to smaller shear strength than soil itself. However, research of the effect on slope stability by soil-rock interfaces is insufficient. Therefore, a series of direct shear tests were performed in order to investigate the effect of soil-rock interface on slope stability. The method of tests is to get sand itself and sand-artificial rock interface shear strength from different grain size of sands and artificial rock samples. The results of tests show that the friction angle of interface depends primarily on particle size and surface roughness. Interface friction angle ratio ${\mu}(={\delta}/{\Phi})$ is in the range of 0.75 ~ 0.96, this results indicate that interface friction angle is smaller than sand itself.

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

Assessment of slope stability using multiple regression analysis

  • Marrapu, Balendra M.;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.237-254
    • /
    • 2017
  • Estimation of slope stability is a very important task in geotechnical engineering. However, its estimation using conventional and soft computing methods has several drawbacks. Use of conventional limit equilibrium methods for the evaluation of slope stability is very tedious and time consuming, while the use of soft computing approaches like Artificial Neural Networks and Fuzzy Logic are black box approaches. Multiple Regression (MR) analysis provides an alternative to conventional and soft computing methods, for the evaluation of slope stability. MR models provide a simplified equation, which can be used to calculate critical factor of safety of slopes without adopting any iterative procedure, thereby reducing the time and complexity involved in the evaluation of slope stability. In the present study, a multiple regression model has been developed and tested its accuracy in the estimation of slope stability using real field data. Here, two separate multiple regression models have been developed for dry and wet slopes. Further, the accuracy of these developed models have been compared and validated with respect to conventional limit equilibrium methods in terms of Mean Square Error (MSE) & Coefficient of determination ($R^2$). As the developed MR models here are not based on any region specific data and covers wide range of parametric variations, they can be directly applied to any real slopes.

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

The Stability Riprap on Scattered Submerged Breakwater due to Physical Model (난적잠제 상부 사석의 안정에 관한 실험적 연구)

  • Park, Sang-Kil;Kim, Woo-Saeng;Lee, Jae-Sung;Kim, Sung-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • This study described the stability of riprap, which was examined by a two-dimensional physical model of a scattered riprap submarine breakwater. Artificial reef structures made of scattered riprap are used like artificial intertidal zone structures as waterfront seaside structures. To prevent topography change in such an artificial intertidal zone the energy is reduced at the scattered riprap submarine breakwater by intercepting high waves. The breaking waves are converted into flow on the front surface slope of the submarine breakwater, which follows the upper part of the artificial intertidal zone. Because of this phenomenon of resisting water flow, it is very important to calculate the required weight of the riprap to maintain its stability. The results of a physical model can be abstracted as shown below. First, distribute the wave breaking types occurring on the front surface slope of the submarine breakwater and arrange it in relation to the movement of riprap. Second, using the hydraulic phenomenon that occurs at the depth of the scattered riprap submarine breakwater, propose a calculation formula for the velocity distribution showing the influence on the stability of the riprap. Third, propose and compare values, which can be obtained by experiments and calculations for riprap stability on the front surface of the artificial intertidal zone. Fourth, calculate the required weight for riprap stability.

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Simulation of Generable Nutritive Salts by Artificial Rainfall Simulator in field - By Varying Amount of Fertilization and Slope - (인공강우기에 의한 밭에서의 영양물질 배출특성 모의 - 시비량 및 경사도 변화 -)

  • Shin, Min-Hwan;Won, Chul-Hee;Choi, Yong-Hun;Seo, Ji-Yeon;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • Various fundamental and practical theories and technologies are needed for the development of Best Management Practices (BMPs) to manage the problems. The objectives of this paper was to investigate the effect of fertilizer and Non-point suource (NPS) pollution discharges from the field. The effect of fertilizer application was measured with respect to 10 % and 20 % slopes, respectively, using artificial rainfall simulator. The effect of fertilizer application on runoff was not significant because the effect of slope and rainfall intensity were overwhelmed. Runoff from 20 % plots was 21 % larger than that from 10 % plots. While groundwater discharge from 10 % plots was about 70 % larger than that from 20 % plots. It was concluded that runoff and groundwater discharge were largely affected by slope. T-N concentration in groundwater was much higher than that in runoff for both 10 % and 20 % plots. While T-P concentration in groundwater was lower than that in runoff. It explained that T-N moved well through soil pores without adsorption and other chemical reactions but T-P was well adsorbed on the surface of soil particles.

The Index of the Stability of Misconceptions (오개념의 견고성 지수)

  • Lee, Yung-Jick;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.3
    • /
    • pp.310-316
    • /
    • 1993
  • One of the major characteristics in misconceptions is the stability over time. However, the concept of stability has not been defined clearly yet even though some trials to quantify the stability has been done. In this study, the researcher tried to establish a stability index of students' misconception for the quantification. In this study, the stability of a misconception was defined using mean correct choice (MC), the slope of correct choice (C), mean incorrent choice(MI) and the slope of incorrect choice(I) as follows; I=1/3 (1-C) (1+I)(1-MC)(1+MI). The index developed in the study was examined using artificial data. In this study, the index seemed to represent the charicteristics of the stability inferred by theoretically. This means the index developed in this study has some validity for the time being. Howerever, since artificial data were used to exame the index, it showed be reexamined using real data in the future study.

  • PDF