• Title/Summary/Keyword: artificial media

Search Result 695, Processing Time 0.027 seconds

Machine Learning-based Production and Sales Profit Prediction Using Agricultural Public Big Data (농업 공공 빅데이터를 이용한 머신러닝 기반 생산량 및 판매 수익금 예측)

  • Lee, Hyunjo;Kim, Yong-Ki;Koo, Hyun Jung;Chae, Cheol-Joo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.19-29
    • /
    • 2022
  • Recently, with the development of IoT technology, the number of farms using smart farms is increasing. Smart farms monitor the environment and optimise internal environment automatically to improve crop yield and quality. For optimized crop cultivation, researches on predict crop productivity are actively studied, by using collected agricultural digital data. However, most of the existing studies are based on statistical models based on existing statistical data, and thus there is a problem with low prediction accuracy. In this paper, we use various predition models for predicting the production and sales profits, and compare the performance results through models by using the agricultural digital data collected in the facility horticultural smart farm. The models that compared the performance are multiple linear regression, support vector machine, artificial neural network, recurrent neural network, LSTM, and ConvLSTM. As a result of performance comparison, ConvLSTM showed the best performance in R2 value and RMSE value.

A System for Determining the Growth Stage of Fruit Tree Using a Deep Learning-Based Object Detection Model (딥러닝 기반의 객체 탐지 모델을 활용한 과수 생육 단계 판별 시스템)

  • Bang, Ji-Hyeon;Park, Jun;Park, Sung-Wook;Kim, Jun-Yung;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.9-18
    • /
    • 2022
  • Recently, research and system using AI is rapidly increasing in various fields. Smart farm using artificial intelligence and information communication technology is also being studied in agriculture. In addition, data-based precision agriculture is being commercialized by convergence various advanced technology such as autonomous driving, satellites, and big data. In Korea, the number of commercialization cases of facility agriculture among smart agriculture is increasing. However, research and investment are being biased in the field of facility agriculture. The gap between research and investment in facility agriculture and open-air agriculture continues to increase. The fields of fruit trees and plant factories have low research and investment. There is a problem that the big data collection and utilization system is insufficient. In this paper, we are proposed the system for determining the fruit tree growth stage using a deep learning-based object detection model. The system was proposed as a hybrid app for use in agricultural sites. In addition, we are implemented an object detection function for the fruit tree growth stage determine.

An Analysis of the Key Factors Affecting Apartment Sales Price in Gwangju, South Korea (광주광역시 아파트 매매가 영향요인 분석)

  • Lim, Sung Yeon;Ko, Chang Wan;Jeong, Young-Seon
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.62-73
    • /
    • 2022
  • Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Application Scenario of Integrated Development Environment for Autonomous IoT Applications based on Neuromorphic Architecture (뉴로모픽 아키텍처 기반 자율형 IoT 응용 통합개발환경 응용 시나리오)

  • Park, Jisu;Kim, Seoyeon;Kim, Hoinam;Jeong, Jaehyeok;Kim, Kyeongsoo;Jung, Jinman;Yun, Young-Sun
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • As the use of various IoT devices increases, the importance of IoT platforms is also rising. Recently, artificial intelligence technology is being combined with IoT devices, and research applying a neuromorphic architecture to IoT devices with low power is also increasing. In this paper, an application scenario is proposed based on NA-IDE (Neuromorphic Architecture-based autonomous IoT application integrated development environment) with IoT devices and FPGA devices in a GUI format. The proposed scenario connects a camera module to an IoT device, collects MNIST dataset images online, recognizes the collected images through a neuromorphic board, and displays the recognition results through a device module connected to other IoT devices. If the neuromorphic architecture is applied to many IoT devices and used for various application services, the autonomous IoT application integrated development environment based on the neuromorphic architecture is expected to emerge as a core technology leading the 4th industrial revolution.

Semantic Pre-training Methodology for Improving Text Summarization Quality (텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론)

  • Mingyu Jeon;Namgyu Kim
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Recently, automatic text summarization, which automatically summarizes only meaningful information for users, is being studied steadily. Especially, research on text summarization using Transformer, an artificial neural network model, has been mainly conducted. Among various studies, the GSG method, which trains a model through sentence-by-sentence masking, has received the most attention. However, the traditional GSG has limitations in selecting a sentence to be masked based on the degree of overlap of tokens, not the meaning of a sentence. Therefore, in this study, in order to improve the quality of text summarization, we propose SbGSG (Semantic-based GSG) methodology that selects sentences to be masked by GSG considering the meaning of sentences. As a result of conducting an experiment using 370,000 news articles and 21,600 summaries and reports, it was confirmed that the proposed methodology, SbGSG, showed superior performance compared to the traditional GSG in terms of ROUGE and BERT Score.

A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture (디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구)

  • Han-Jin Cho
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • Smart Farm means creating new value in various fields related to agriculture, including not only agricultural production but also distribution and consumption through the convergence of agriculture and ICT. In Korea, a rental smart farm is created to spread smart agriculture, and a smart farm big data platform is established to promote data collection and utilization. It is pushing for digital transformation of agricultural products distribution from production areas to consumption areas, such as expanding smart APCs, operating online exchanges, and digitizing wholesale market transaction information. As such, although agricultural data is generated according to characteristics from various sources, it is only used as a service using statistics and standardized data. This is because there are limitations due to distributed data collection from agriculture to production, distribution, and consumption, and it is difficult to collect and process various types of data from various sources. Therefore, in this paper, we analyze the current state of domestic agricultural data collection and sharing for digital agriculture and propose a data collection and linkage method for artificial intelligence services. And, using the proposed data, we propose a deep learning-based environmental factor recommendation method.

A Study on hotel AI robot service built on the value-attitude-behavior(VAB) model (가치-태도-행동 모델을 적용한 호텔 AI 로봇서비스에 관한 연구)

  • Hejin Chun;Heeseung Lee
    • Smart Media Journal
    • /
    • v.12 no.8
    • /
    • pp.60-68
    • /
    • 2023
  • After COVID-19, hotel industry is rapidly experiencing changes in the business environment, and under the influence of the Fourth Industrial Revolution, hotel industry is striving to secure competitive advantages through differentiation, including the use of big data and the IoT in service provision, as well as the introduction of artificial intelligence(AI) robot services. This study analyzed the perceived value of AI robot services and their impact on usage attitudes and behavioral intentions of customers who have used hotels that have introduced AI robot services. The results of the study showed that the value of robot services perceived by customers who have used robot services in hotels is categorized into three dimensions: social, experiential, and functional, and all of them have a positive effect on usage attitudes, with social, functional, and experiential values having a positive effect on usage attitudes in that order. Attitude toward use was also analyzed to have a positive effect on behavioral intention, which is consistent with the value-attitude-behavior model. Therefore, it is necessary for hotels to improve the satisfaction of hotel guests through diversified services of AI robot service.

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

Proposal of elevator calling intelligent IoT system using smartphone Bluetooth (스마트폰 블루투스를 이용한 승강기 호출 지능형 IoT 시스템 제안)

  • Si Yeon Kim;Sun-Kuk Noh
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.60-66
    • /
    • 2024
  • The Internet of Things, which began by connecting sensors through a network, is developing into an intelligent IoT by combining it with artificial intelligence technology. Elevators are essential for high-rise buildings in the city, and elevators move from floor to floor and perform the functions of transporting goods and moving users. It is necessary to provide safe and convenient services for elevator users in high-rise buildings or special environments (hospitals, etc.). In an environment where rapid patient transportation is important, such as large hospitals, there is a problem that hospital staff and the general public often use the elevator for patients. In particular, when moving patients where golden time is important, the waiting time to board the elevator is a major hindrance. In order to solve this problem, this study proposes an intelligent IoT system for elevator calling using smartphone Bluetooth. First, we experimented with the elevator calling IoT system using smartphone Bluetooth, and as a result of the experiment, it was confirmed that it can authenticate elevator users and reduce unnecessary waiting time for boarding. In addition, we propose an intelligent IoT system that connects with intelligent IoT.