최근 COVID-19로 인해 증가한 급성 폐부전 중증환자 치료를 위한 인공폐 기술의 필요성이 부각되었다. 또한, 빠르게 진행되고 있는 인구고령화는 인공장기(artificial organ, AO) 기술에 대한 높은 수요를 불가피하게 만들고 있다. 분리막은폐, 신장, 간 및 췌장을 포함한 많은 AO 기기의 핵심 부품이다. 특히 인공폐(artificial lung, AL) 기술은 지난 50년간 빠르게 발전해왔지만, 장기부전 환자의 생존율은 50% 내외로 여전히 낮은 편이다. 현재 대부분의 AL 관련문헌은 임상결과에 집중되어 있으며, AL 분리막의 개발연구는 매우 부족한 편이다. 이에 대한 원인 중 하나는 AL 기술이 생명공학을 포함하여 고분자 화학 및 분리공정 기술을 아우르는 융합적 기술개발을 요구하기 때문인 것으로 판단된다. 본 총설에서는 헬스케어산업에서 AL 분리막 기술의 역할과 기술개발이 필요한 난제들을 정리하였다. 특히, 분리막 소재의 혈액적합성, 분리성능, 모듈 디자인 및 공정 구성 측면에서 다양한 연구개발이 필요하다는 부분을 강조하고자 한다.
본 연구의 목적은 정맥 내 폐 보조장치 설계에 있어서 기체전달을 예측하기 위하여 혈관 내 폐 보조장치를 정맥 내에 삽입하기 전, 여러 가지 설계조건에서 실험적 모델링을 통하여 예측식을 찾고자 시도하였다. 실험결과 중공사 충진율의 함수에 따라 기체전달을 예측할 수 있었다. 실험에 의하여 얻어진 기체전달은 예측식에 의한 기체전달과 유사하여, 식에 대한 신뢰성을 얻을 수 있었다. 그러므로, 중공사의 충진율의 함수에 따라 기체전달을 예측할 수 있으며, 혈관 내 폐 보조장치의 기체전달을 예측하는데 매우 유용하였다.
The goal of this work is to design and build an implantable artificial lung that can be inserted as a whole into a large vein in the body with the least effect on cardiovascular hemodynamics. The experimental results demonstrate that the pressure drop is not entirely related to viscosity effects. The friction factor decreases with an increase in the number of tied-hollow fibers at a constant Reynolds number A uniform flow pattern without stagnation is observed at all numbers of tied hollow fibers tested. The tied hollow fiber module, built in this study with 3 cm of outer diameter of module. 380 m of outer diameter of tied hollow fiber, and 700 number of tied hollow fiber with length of 60 cm, which shows a pressure drop of 13-16 mmHg, satisfies the required pressure drop qualifying 15 mmHg as an intravascular artificial lung.
Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.
Statistical methods to analyze and predict the related risk factors of nosocomial infection in lung cancer patients are various, but the results are inconsistent. A total of 609 patients with lung cancer were enrolled to allow factor comparison using Student's t-test or the Mann-Whitney test or the Chi-square test. Variables that were significantly related to the presence of nosocomial infection were selected as candidates for input into the final ANN model. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of nosocomial infection from lung cancer in this entire study population was 20.1% (165/609), nosocomial infections occurring in sputum specimens (85.5%), followed by blood (6.73%), urine (6.0%) and pleural effusions (1.82%). It was shown that long term hospitalization (${\geq}22days$, P= 0.000), poor clinical stage (IIIb and IV stage, P=0.002), older age (${\geq}61days$ old, P=0.023), and use the hormones were linked to nosocomial infection and the ANN model consisted of these four factors. The artificial neural network model with variables consisting of age, clinical stage, time of hospitalization, and use of hormones should be useful for predicting nosocomial infection in lung cancer cases.
A method to predict the risk of lung cancer is proposed, based on two feature selection algorithms: Fisher and ReliefF, and BP Neural Networks. An appropriate quantity of risk factors was chosen for lung cancer risk prediction. The process featured two steps, firstly choosing the risk factors by combining two feature selection algorithms, then providing the predictive value by neural network. Based on the method framework, an algorithm LCRP (lung cancer risk prediction) is presented, to reduce the amount of risk factors collected in practical applications. The proposed method is suitable for health monitoring and self-testing. Experiments showed it can actually provide satisfactory accuracy under low dimensions of risk factors.
It is difficult to differentially diagnose between lung cancer and benign inflammatory lung lesion due to high false positive rate on F-18 FDG-PET. We investigated whether application of artificial neural network to this diagnosis may be helpful. We reviewed the medical records and F-18 FDG PET images of 12 patients, selecting clinical and PET variables such as SUV. For selected variables and confirm, multilayer neural perceptron was applied in crossvalidation method and compared to visual interpretation. Neural network correctly classified the lung lesions in 83%, and reduced greately the false positive rate. However, false negative rate was not influenced. Application of neural network to the differential diagnosis between lung cancer and benigh inflammatory lesion may be helpful. Further studies with more patients are warranted.
We experienced a series of animal experimental studies of the total artificial heart in 1988. So called, "Korean Heart* was used in this study, which is developed and fabricated in the Department of Biomedical Engineering, College of Med., S.N.U.. "Korean Heart" is a Rolling-Cylinder Motor-Driven type which is a newly developed electromechanical heart over the shortcomes of the previous artificial hearts, especially pneumatic type. The advantages of the "Korean Heart" are total implantability, quiet and smooth movement, small size fittable in oriental people, etc. The animal experiments were performed two times, as an assist device in sheep and total artificial heart implant experiment in calf weighing 100 kg. After total implantation, the artificial heart was well functioned in movement and hemodynamic control. So that, the calf was recovered excellently, which was able to stand up by herself and take an oral intake. Total survival time was 100 hours and the cause of death was a sudden pumping failure [electrical connection problem]. Several postoperative laboratory results almost within normal limits and no hemolysis, but in autopsy, the multiple thromboembolic findings were seen at the lung and kidney.n at the lung and kidney.
One of the most promising technologies that is raised from the fourth industrial revolution is Digital Twin (DT). A DT captures attributes and behaviors of the entity suitable for communication, storage, interpretation or processing within certain context. A digital twin based on microservice framework architecture is proposed in this paper which identifies elements required for the complete orchestration of microservice based Survival Analysis of Lung Cancer Patients. Integration of microservices and Digital Twin Technology is studied.
Background: The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. Materials and Methods: A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. Results: The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05%(200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (${\geq}65$ years), use of antibiotics, low serum albumin concentrations (${\leq}37.18g/L$), radiotherapy, surgery, low hemoglobin hyperlipidemia (${\leq}93.67g/L$), long time of hospitalization (${\geq}14$days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model($0.829{\pm}0.019$)was higher than that of LR model ($0.756{\pm}0.021$). Conclusions: The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.