• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.024 seconds

Toward a Possibility of the Unified Model of Cognition (통합적 인지 모형의 가능성)

  • Rhee Young-Eui
    • Journal of Science and Technology Studies
    • /
    • v.1 no.2 s.2
    • /
    • pp.399-422
    • /
    • 2001
  • Models for human cognition currently discussed in cognitive science cannot be appropriate ones. The symbolic model of the traditional artificial intelligence works for reasoning and problem-solving tasks, but doesn't fit for pattern recognition such as letter/sound cognition. Connectionism shows the contrary phenomena to those of the traditional artificial intelligence. Connectionist systems has been shown to be very strong in the tasks of pattern recognition but weak in most of logical tasks. Brooks' situated action theory denies the. notion of representation which is presupposed in both the traditional artificial intelligence and connectionism and suggests a subsumption model which is based on perceptions coming from real world. However, situated action theory hasn't also been well applied to human cognition so far. In emphasizing those characteristics of models I refer those models 'left-brain model', 'right-brain model', and 'robot model' respectively. After I examine those models in terms of substantial items of cognitions- mental state, mental procedure, basic element of cognition, rule of cognition, appropriate level of analysis, architecture of cognition, I draw three arguments of embodiment. I suggest a way of unifying those existing models by examining their theoretical compatability which is found in those arguments.

  • PDF

Brain-Inspired Artificial Intelligence (브레인 모사 인공지능 기술)

  • Kim, C.H.;Lee, J.H.;Lee, S.Y.;Woo, Y.C.;Baek, O.K.;Won, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Standardization Trends on Safety and Trustworthiness Technology for Advanced AI (첨단 인공지능 안전 및 신뢰성 기술 표준 동향)

  • J.H. Jeon
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.108-122
    • /
    • 2024
  • Artificial Intelligence (AI) has rapidly evolved over the past decade and has advanced in areas such as language comprehension, image and video recognition, programming, and scientific reasoning. Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence. These systems demonstrate superior performance in complex problem-solving, natural language processing, and multidomain tasks, and can potentially transform fields such as science, industry, healthcare, and education. However, these advancements have raised concerns regarding the safety and trustworthiness of advanced AI, including risks related to uncontrollability, ethical conflicts, long-term socioeconomic impacts, and safety assurance. Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI. This study analyzes international trends in safety and trustworthiness standardization for advanced AI, identifies key areas for standardization, proposes future directions and strategies, and draws policy implications. The goal is to support the safe and trustworthy development of advanced AI and enhance international competitiveness through effective standardization.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

Spatial interpolation of SPT data and prediction of consolidation of clay by ANN method

  • Kim, Hyeong-Joo;Dinoy, Peter Rey T.;Choi, Hee-Seong;Lee, Kyoung-Bum;Mission, Jose Leo C.
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.523-535
    • /
    • 2019
  • Artificial Intelligence (AI) is anticipated to be the future of technology. Hence, AI has been applied in various fields over the years and its applications are expected to grow in number with the passage of time. There has been a growing need for accurate, direct, and quick prediction of geotechnical and foundation engineering models especially since the success of each project relies on numerous amounts of data. In this study, two applications of AI in the field of geotechnical and foundation engineering are presented - spatial interpolation of standard penetration test (SPT) data and prediction of consolidation of clay. SPT and soil profile data may be predicted and estimated at any location and depth at a site that has no available borehole test data using artificial intelligence techniques such as artificial neural networks (ANN) based on available geospatial information from nearby boreholes. ANN can also be used to accelerate the calculation of various theoretical methods such as the one-dimensional consolidation theory of clay with high efficiency by using lesser computation resources. The results of the study showed that ANN can be a valuable, powerful, and practical tool in providing various information that is needed in geotechnical and foundation design.

Sasang Constitution Detection Based on Facial Feature Analysis Using Explainable Artificial Intelligence (설명가능한 인공지능을 활용한 안면 특징 분석 기반 사상체질 검출)

  • Jeongkyun Kim;Ilkoo Ahn;Siwoo Lee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.36 no.2
    • /
    • pp.39-48
    • /
    • 2024
  • Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.

Use of automated artificial intelligence to predict the need for orthodontic extractions

  • Real, Alberto Del;Real, Octavio Del;Sardina, Sebastian;Oyonarte, Rodrigo
    • The korean journal of orthodontics
    • /
    • v.52 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Objective: To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records. Methods: The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions. Results: By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used. Conclusions: The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

Recent advances in sketch based image retrieval: a survey (스케치 기반 이미지 검색의 최신 연구 동향)

  • Sehong Oh;Ho-Sik Seok
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.209-220
    • /
    • 2024
  • A sketch is an intuitive means to express information, but compared to actual images, it has the problem of being highly abstract, diverse, and sparse. Recent advances in deep learning models have made it possible to discover features that are common to images and sketches. In this paper, we summarize recent trends in sketch-based image retrieval (SBIR) but it is not limited to SBIR. Besides SBIR, we also introduce sketch-based image recognition and generation studies. Zero-shot learning enables models to recognize categories not encountered during training. Zero-shot SBIR methods are also discussed. Commonly used free-hand sketch datasets are summarized and retrieval performance based on these datasets is reported.

Development and evaluation of AI-based algorithm models for analysis of learning trends in adult learners (성인 학습자의 학습 추이 분석을 위한 인공지능 기반 알고리즘 모델 개발 및 평가)

  • Jeong, Youngsik;Lee, Eunjoo;Do, Jaewoo
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.813-824
    • /
    • 2021
  • To improve educational performance by analyzing the learning trends of adult learners of Open High Schools, various algorithm models using artificial intelligence were designed and performance was evaluated by applying them to real data. We analyzed Log data of 115 adult learners in the cyber education system of Open High Schools. Most adult learners of Open High Schools learned more than recommended learning time, but at the end of the semester, the actual learning time was significantly reduced compared to the recommended learning time. In the second half of learning, the participation rate of VODs, formation assessments, and learning activities also decreased. Therefore, in order to improve educational performance, learning time should be supported to continue in the second half. In the latter half, we developed an artificial intelligence algorithm models using Tensorflow to predict learning time by data they started taking the course. As a result, when using CNN(Convolutional Neural Network) model to predict single or multiple outputs, the mean-absolute-error is lowest compared to other models.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.