• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.031 seconds

Error Analysis of Recent Conversational Agent-based Commercialization Education Platform (최신 대화형 에이전트 기반 상용화 교육 플랫폼 오류 분석)

  • Lee, Seungjun;Park, Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.

Feature Extraction and Recognition of Myanmar Characters Based on Deep Learning (딥러닝 기반 미얀마 문자의 특징 추출 및 인식)

  • Ohnmar, Khin;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.977-984
    • /
    • 2022
  • Recently, with the economic development of Southeast Asia, the use of information devices is widely spreading, and the demand for application services using intelligent character recognition is increasing. This paper discusses deep learning-based feature extraction and recognition of Myanmar, one of the Southeast Asian countries. Myanmar alphabet (33 letters) and Myanmar numerals (10 numbers) are used for feature extraction. In this paper, the number of nine features are extracted and more than three new features are proposed. Extracted features of each characters and numbers are expressed with successful results. In the recognition part, convolutional neural networks are used to assess its execution on character distinction. Its algorithm is implemented on captured image data-sets and its implementation is evaluated. The precision of models on the input data set is 96 % and uses a real-time input image.

3D Medical Image Data Augmentation for CT Image Segmentation (CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법)

  • Seonghyeon Ko;Huigyu Yang;Moonseong Kim;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.85-92
    • /
    • 2023
  • Deep learning applications are increasingly being leveraged for disease detection tasks in medical imaging modalities such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Most data-centric deep learning challenges necessitate the use of supervised learning methodologies to attain high accuracy and to facilitate performance evaluation through comparison with the ground truth. Supervised learning mandates a substantial amount of image and label sets, however, procuring an adequate volume of medical imaging data for training is a formidable task. Various data augmentation strategies can mitigate the underfitting issue inherent in supervised learning-based models that are trained on limited medical image and label sets. This research investigates the enhancement of a deep learning-based rib fracture segmentation model and the efficacy of data augmentation techniques such as left-right flipping, rotation, and scaling. Augmented dataset with L/R flipping and rotations(30°, 60°) increased model performance, however, dataset with rotation(90°) and ⨯0.5 rescaling decreased model performance. This indicates the usage of appropriate data augmentation methods depending on datasets and tasks.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

Analysis of Success Factors of OTT Original Contents Through BigData, Netflix's 'Squid Game Season 2' Proposal (빅데이터를 통한 OTT 오리지널 콘텐츠의 성공요인 분석, 넷플릭스의 '오징어게임 시즌2' 제언)

  • Ahn, Sunghun;Jung, JaeWoo;Oh, Sejong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • This study analyzes the success factors of OTT original content through big data, and intends to suggest scenarios, casting, fun, and moving elements when producing the next work. In addition, I would like to offer suggestions for the success of 'Squid Game Season 2'. The success factor of 'Squid Game' through big data is first, it is a simple psychological experimental game. Second, it is a retro strategy. Third, modern visual beauty and color. Fourth, it is simple aesthetics. Fifth, it is the platform of OTT Netflix. Sixth, Netflix's video recommendation algorithm. Seventh, it induced Binge-Watch. Lastly, it can be said that the consensus was high as it was related to the time to think about 'death' and 'money' in a pandemic situation. The suggestions for 'Squid Game Season 2' are as follows. First, it is a fusion of famous traditional games of each country. Second, it is an AI-based planned MD product production and sales strategy. Third, it is casting based on artificial intelligence big data. Fourth, secondary copyright and copyright sales strategy. The limitations of this study were analyzed only through external data. Data inside the Netflix platform was not utilized. In this study, if AI big data is used not only in the OTT field but also in entertainment and film companies, it will be possible to discover better business models and generate stable profits.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.

A Study on Big Data Analysis of Related Patents in Smart Factories Using Topic Models and ChatGPT (토픽 모형과 ChatGPT를 활용한 스마트팩토리 연관 특허 빅데이터 분석에 관한 연구)

  • Sang-Gook Kim;Minyoung Yun;Taehoon Kwon;Jung Sun Lim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.15-31
    • /
    • 2023
  • In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.

Research on Driving Pattern Analysis Techniques Using Contrastive Learning Methods (대조학습 방법을 이용한 주행패턴 분석 기법 연구)

  • Hoe Jun Jeong;Seung Ha Kim;Joon Hee Kim;Jang Woo Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.182-196
    • /
    • 2024
  • This study introduces driving pattern analysis and change detection methods using smartphone sensors, based on contrastive learning. These methods characterize driving patterns without labeled data, allowing accurate classification with minimal labeling. In addition, they are robust to domain changes, such as different vehicle types. The study also examined the applicability of these methods to smartphones by comparing them with six lightweight deep-learning models. This comparison supported the development of smartphone-based driving pattern analysis and assistance systems, utilizing smartphone sensors and contrastive learning to enhance driving safety and efficiency while reducing the need for extensive labeled data. This research offers a promising avenue for addressing contemporary transportation challenges and advancing intelligent transportation systems.

Transfer Learning-based Generated Synthetic Images Identification Model (전이 학습 기반의 생성 이미지 판별 모델 설계)

  • Chaewon Kim;Sungyeon Yoon;Myeongeun Han;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.465-470
    • /
    • 2024
  • The advancement of AI-based image generation technology has resulted in the creation of various images, emphasizing the need for technology capable of accurately discerning them. The amount of generated image data is limited, and to achieve high performance with a limited dataset, this study proposes a model for discriminating generated images using transfer learning. Applying pre-trained models from the ImageNet dataset directly to the CIFAKE input dataset, we reduce training time cost followed by adding three hidden layers and one output layer to fine-tune the model. The modeling results revealed an improvement in the performance of the model when adjusting the final layer. Using transfer learning and then adjusting layers close to the output layer, small image data-related accuracy issues can be reduced and generated images can be classified.

Deep learning-based clothing attribute classification using fashion image data (패션 이미지 데이터를 활용한 딥러닝 기반의 의류속성 분류)

  • Hye Seon Jeong;So Young Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • Attributes such as material, color, and fit in fashion images are important factors for consumers to purchase clothing. However, the process of classifying clothing attributes requires a large amount of manpower and is inconsistent because it relies on the subjective judgment of human operators. To alleviate this problem, there is a need for research that utilizes artificial intelligence to classify clothing attributes in fashion images. Previous studies have mainly focused on classifying clothing attributes for either tops or bottoms, so there is a limitation that the attributes of both tops and bottoms cannot be identified simultaneously in the case of full-body fashion images. In this study, we propose a deep learning model that can distinguish between tops and bottoms in fashion images and classify the category of each item and the attributes of the clothing material. The deep learning models ResNet and EfficientNet were used in this study, and the dataset used for training was 1,002,718 fashion images and 125 labels including clothing categories and material properties. Based on the weighted F1-Score, ResNet is 0.800 and EfficientNet is 0.781, with ResNet showing better performance.