• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.03 seconds

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Prediction of Vertical Sea Water Temperature Profile in the East Sea Based on Machine Learning and XBT Data

  • Kim, Young-Joo;Lee, Soo-Jin;Kim, Young-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, researches on the prediction of sea water temperature using artificial intelligence models has been actively conducted in Korea. However, most researches in the sea around the Korean peninsula mainly focus on predicting sea surface temperatures. Unlike previous researches, this research predicted the vertical sea water temperature profile of the East Sea, which is very important in submarine operations and anti-submarine warfare, using XBT(eXpendable Bathythermograph) data and machine learning models(RandomForest, XGBoost, LightGBM). The model was trained using XBT data measured from sea surface to depth of 200m in a specific area of the East Sea, and the prediction accuracy was evaluated through MAE(Mean Absolute Error) and vertical sea water temperature profile graphs.

AI Model-Based Automated Data Cleaning for Reliable Autonomous Driving Image Datasets (자율주행 영상데이터의 신뢰도 향상을 위한 AI모델 기반 데이터 자동 정제)

  • Kana Kim;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.302-313
    • /
    • 2023
  • This paper aims to develop a framework that can fully automate the quality management of training data used in large-scale Artificial Intelligence (AI) models built by the Ministry of Science and ICT (MSIT) in the 'AI Hub Data Dam' project, which has invested more than 1 trillion won since 2017. Autonomous driving technology using AI has achieved excellent performance through many studies, but it requires a large amount of high-quality data to train the model. Moreover, it is still difficult for humans to directly inspect the processed data and prove it is valid, and a model trained with erroneous data can cause fatal problems in real life. This paper presents a dataset reconstruction framework that removes abnormal data from the constructed dataset and introduces strategies to improve the performance of AI models by reconstructing them into a reliable dataset to increase the efficiency of model training. The framework's validity was verified through an experiment on the autonomous driving dataset published through the AI Hub of the National Information Society Agency (NIA). As a result, it was confirmed that it could be rebuilt as a reliable dataset from which abnormal data has been removed.

Development and Verification of an AI Model for Melon Import Prediction

  • KHOEURN SAKSONITA;Jungsung Ha;Wan-Sup Cho;Phyoungjung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.29-37
    • /
    • 2023
  • Due to climate change, interest in crop production and distribution is increasing, and attempts are being made to use bigdata and AI to predict production volume and control shipments and distribution stages. Prediction of agricultural product imports not only affects prices, but also controls shipments of farms and distributions of distribution companies, so it is important information for establishing marketing strategies. In this paper, we create an artificial intelligence prediction model that predicts the future import volume based on the wholesale market melon import volume data disclosed by the agricultural statistics information system and evaluate its accuracy. We create prediction models using three models: the Neural Prophet technique, the Ensembled Neural Prophet model, and the GRU model. As a result of evaluating the performance of the model by comparing two major indicators, MAE and RMSE, the Ensembled Neural Prophet model predicted the most accurately, and the GRU model also showed similar performance to the ensemble model. The model developed in this study is published on the web and used in the field for 1 year and 6 months, and is used to predict melon production in the near future and to establish marketing and distribution strategies.

Development of Artificial Intelligence-Based Remote-Sense Reflectance Prediction Model Using Long-Term GOCI Data (장기 GOCI 자료를 활용한 인공지능 기반 원격 반사도 예측 모델 개발)

  • Donguk Lee;Joo Hyung Ryu;Hyeong-Tae Jou;Geunho Kwak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1577-1589
    • /
    • 2023
  • Recently, the necessity of predicting changes for monitoring ocean is widely recognized. In this study, we performed a time series prediction of remote-sensing reflectance (Rrs), which can indicate changes in the ocean, using Geostationary Ocean Color Imager (GOCI) data. Using GOCI-I data, we trained a multi-scale Convolutional Long-Short-Term-Memory (ConvLSTM) which is proposed in this study. Validation was conducted using GOCI-II data acquired at different periods from GOCI-I. We compared model performance with the existing ConvLSTM models. The results showed that the proposed model, which considers both spatial and temporal features, outperformed other models in predicting temporal trends of Rrs. We checked the temporal trends of Rrs learned by the model through long-term prediction results. Consequently, we anticipate that it would be available in periodic change detection.

Comparative Study of AI Models for Reliability Function Estimation in NPP Digital I&C System Failure Prediction (원전 디지털 I&C 계통 고장예측을 위한 신뢰도 함수 추정 인공지능 모델 비교연구)

  • DaeYoung Lee;JeongHun Lee;SeungHyeok Yang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.1-10
    • /
    • 2023
  • The nuclear power plant(NPP)'s Instrumentation and Control(I&C) system periodically conducts integrity checks for the maintenance of self-diagnostic function during normal operation. Additionally, it performs functionality and performance checks during planned preventive maintenance periods. However, there is a need for technological development to diagnose failures and prevent accidents in advance. In this paper, we studied methods for estimating the reliability function by utilizing environmental data and self-diagnostic data of the I&C equipment. To obtain failure data, we assumed probability distributions for component features of the I&C equipment and generated virtual failure data. Using this failure data, we estimated the reliability function using representative artificial intelligence(AI) models used in survival analysis(DeepSurve, DeepHit). And we also estimated the reliability function through the Cox regression model of the traditional semi-parametric method. We confirmed the feasibility through the residual lifetime calculations based on environmental and diagnostic data.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors

  • Ki-Hyun Jeon;Jong-Hwan Jang;Sora Kang;Hak Seung Lee;Min Sung Lee;Jeong Min Son;Yong-Yeon Jo;Tae Jun Park;Il-Young Oh;Joon-myoung Kwon;Ji Hyun Lee
    • Korean Circulation Journal
    • /
    • v.53 no.11
    • /
    • pp.758-771
    • /
    • 2023
  • Background and Objectives: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. Methods: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. Results: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. Conclusions: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

File Type Identification Using CNN and GRU (CNN과 GRU를 활용한 파일 유형 식별 및 분류)

  • Mingyu Seong;Taeshik Shon
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.12-22
    • /
    • 2024
  • With the rapid increase in digital data in modern society, digital forensics plays a crucial role, and file type identification is one of its integral components. Research on the development of identification models utilizing artificial intelligence is underway to identify file types swiftly and accurately. However, existing studies do not support the identification of file types with high domestic usage rates, making them unsuitable for use within the country. Therefore, this paper proposes a more accurate file type identification model using Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). To overcome limitations of existing methods, the proposed model demonstrates superior performance on the FFT-75 dataset, effectively identifying file types with high domestic usage rates such as HWP, ALZ, and EGG. The model's performance is validated by comparing it with three existing research models (CNN-CO, FiFTy, CNN-LSTM). Ultimately, the CNN and GRU based file type identification and classification model achieved 68.2% accuracy on 512-byte file fragments and 81.4% accuracy on 4096-byte file fragments.

  • PDF