• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.03 seconds

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

StarGAN-Based Detection and Purification Studies to Defend against Adversarial Attacks (적대적 공격을 방어하기 위한 StarGAN 기반의 탐지 및 정화 연구)

  • Sungjune Park;Gwonsang Ryu;Daeseon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.449-458
    • /
    • 2023
  • Artificial Intelligence is providing convenience in various fields using big data and deep learning technologies. However, deep learning technology is highly vulnerable to adversarial examples, which can cause misclassification of classification models. This study proposes a method to detect and purification various adversarial attacks using StarGAN. The proposed method trains a StarGAN model with added Categorical Entropy loss using adversarial examples generated by various attack methods to enable the Discriminator to detect adversarial examples and the Generator to purification them. Experimental results using the CIFAR-10 dataset showed an average detection performance of approximately 68.77%, an average purification performance of approximately 72.20%, and an average defense performance of approximately 93.11% derived from restoration and detection performance.

Exploring Machine Learning Classifiers for Breast Cancer Classification

  • Inayatul Haq;Tehseen Mazhar;Hinna Hafeez;Najib Ullah;Fatma Mallek;Habib Hamam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.860-880
    • /
    • 2024
  • Breast cancer is a major health concern affecting women and men globally. Early detection and accurate classification of breast cancer are vital for effective treatment and survival of patients. This study addresses the challenge of accurately classifying breast tumors using machine learning classifiers such as MLP, AdaBoostM1, logit Boost, Bayes Net, and the J48 decision tree. The research uses a dataset available publicly on GitHub to assess the classifiers' performance and differentiate between the occurrence and non-occurrence of breast cancer. The study compares the 10-fold and 5-fold cross-validation effectiveness, showing that 10-fold cross-validation provides superior results. Also, it examines the impact of varying split percentages, with a 66% split yielding the best performance. This shows the importance of selecting appropriate validation techniques for machine learning-based breast tumor classification. The results also indicate that the J48 decision tree method is the most accurate classifier, providing valuable insights for developing predictive models for cancer diagnosis and advancing computational medical research.

Creating a Smartphone User Recommendation System Using Clustering (클러스터링을 이용한 스마트폰 사용자 추천 시스템 만들기)

  • Jin Hyoung AN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In this paper, we develop an AI-based recommendation system that matches the specifications of smartphones from company 'S'. The system aims to simplify the complex decision-making process of consumers and guide them to choose the smartphone that best suits their daily needs. The recommendation system analyzes five specifications of smartphones (price, battery capacity, weight, camera quality, capacity) to help users make informed decisions without searching for extensive information. This approach not only saves time but also improves user satisfaction by ensuring that the selected smartphone closely matches the user's lifestyle and needs. The system utilizes unsupervised learning, i.e. clustering (K-MEANS, DBSCAN, Hierarchical Clustering), and provides personalized recommendations by evaluating them with silhouette scores, ensuring accurate and reliable grouping of similar smartphone models. By leveraging advanced data analysis techniques, the system can identify subtle patterns and preferences that might not be immediately apparent to consumers, enhancing the overall user experience. The ultimate goal of this AI recommendation system is to simplify the smartphone selection process, making it more accessible and user-friendly for all consumers. This paper discusses the data collection, preprocessing, development, implementation, and potential impact of the system using Pandas, crawling, scikit-learn, etc., and highlights the benefits of helping consumers explore the various options available and confidently choose the smartphone that best suits their daily lives.

Prediction of Near-Surface Winds on Airport Runways Using Machine Learning (기계학습을 활용한 공항 활주로 지상 바람의 예측)

  • Seung-Min Lee;Seung-Jae Lee;Harim Kang;Sook Jung Ham;Jae Ik Song;Ki Nam Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.15-28
    • /
    • 2024
  • Wind forecast is one of the key meteorological factors required for safe aircraft takeoff and landing. In this study, we developed an artificial intelligence-based wind compensation method by learning the Korea Air Force Weather Research and Forecast (KAF-WRF) forecast data and the Airfield Meteorological Observation System (AMOS) data at five airports using Support Vector Machine (SVM). The SVM wind prediction models were composed of three types according to the learning period (30 days, 40 days, and 60 days) using seven KAF-WRF variables as training data, and the wind prediction performance at the five airports was evaluated using Root Mean Squared Errors (RMSE). According to the results, the SVM wind prediction model trained using U (east-west) and V (north-south) components performed approximately 18% better than the model trained using wind speed and wind direction. The wind correction of KAF-WRF with AMOS observations via SVM outperformed the conventional KAF-WRF wind predictions in eight out of ten cases, capturing abrupt changes in wind direction and speed with a 25% reduction in RMSE.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Prediction Model of Hypertension Using Sociodemographic Characteristics Based on Machine Learning (머신러닝 기반 사회인구학적 특징을 이용한 고혈압 예측모델)

  • Lee, Bum Ju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.541-546
    • /
    • 2021
  • Recently, there is a trend of developing various identification and prediction models for hypertension using clinical information based on artificial intelligence and machine learning around the world. However, most previous studies on identification or prediction models of hypertension lack the consideration of the ideas of non-invasive and cost-effective variables, race, region, and countries. Therefore, the objective of this study is to present hypertension prediction model that is easily understood using only general and simple sociodemographic variables. Data used in this study was based on the Korea National Health and Nutrition Examination Survey (2018). In men, the model using the naive Bayes with the wrapper-based feature subset selection method showed the highest predictive performance (ROC = 0.790, kappa = 0.396). In women, the model using the naive Bayes with correlation-based feature subset selection method showed the strongest predictive performance (ROC = 0.850, kappa = 0.495). We found that the predictive performance of hypertension based on only sociodemographic variables was higher in women than in men. We think that our models based on machine leaning may be readily used in the field of public health and epidemiology in the future because of the use of simple sociodemographic characteristics.

A Study on the Win-Loss Prediction Analysis of Korean Professional Baseball by Artificial Intelligence Model (인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구)

  • Kim, Tae-Hun;Lim, Seong-Won;Koh, Jin-Gwang;Lee, Jae-Hak
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • In this study, we conducted a study on the win-loss predicton analysis of korean professional baseball by artificial intelligence models. Based on the model, we predicted the winner as well as each team's final rank in the league. Additionally, we developed a website for viewers' understanding. In each game's first, third, and fifth inning, we analyze to select the best model that performs the highest accuracy and minimizes errors. Based on the result, we generate the rankings. We used the predicted data started from May 5, the season's opening day, to August 30, 2020 to generate the rankings. In the games which Kia Tigers did not play, however, we used actual games' results in the data. KNN and AdaBoost selected the most optimized machine learning model. As a result, we observe a decreasing trend of the predicted results' ranking error as the season progresses. The deep learning model recorded 89% of the model accuracy. It provides the same result of decreasing ranking error trends of the predicted results that we observe in the machine learning model. We estimate that this study's result applies to future KBO predictions as well as other fields. We expect broadcasting enhancements by posting the predicted winning percentage per inning which is generated by AI algorism. We expect this will bring new interest to the KBO fans. Furthermore, the prediction generated at each inning would provide insights to teams so that they can analyze data and come up with successful strategies.

Development of Cloud-Based Medical Image Labeling System and It's Quantitative Analysis of Sarcopenia (클라우드기반 의료영상 라벨링 시스템 개발 및 근감소증 정량 분석)

  • Lee, Chung-Sub;Lim, Dong-Wook;Kim, Ji-Eon;Noh, Si-Hyeong;Yu, Yeong-Ju;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.233-240
    • /
    • 2022
  • Most of the recent AI researches has focused on developing AI models. However, recently, artificial intelligence research has gradually changed from model-centric to data-centric, and the importance of learning data is getting a lot of attention based on this trend. However, it takes a lot of time and effort because the preparation of learning data takes up a significant part of the entire process, and the generation of labeling data also differs depending on the purpose of development. Therefore, it is need to develop a tool with various labeling functions to solve the existing unmetneeds. In this paper, we describe a labeling system for creating precise and fast labeling data of medical images. To implement this, a semi-automatic method using Back Projection, Grabcut techniques and an automatic method predicted through a machine learning model were implemented. We not only showed the advantage of running time for the generation of labeling data of the proposed system, but also showed superiority through comparative evaluation of accuracy. In addition, by analyzing the image data set of about 1,000 patients, meaningful diagnostic indexes were presented for men and women in the diagnosis of sarcopenia.