• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.03 seconds

Design and Implementation of Interactive Search Service based on Deep Learning and Morpheme Analysis in NTIS System (NTIS 시스템에서 딥러닝과 형태소 분석 기반의 대화형 검색 서비스 설계 및 구현)

  • Lee, Jong-Won;Kim, Tae-Hyun;Choi, Kwang-Nam
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.9-14
    • /
    • 2020
  • Currently, NTIS (National Technology Information Service) is building an interactive search service based on artificial intelligence technology. In order to understand users' search intentions and provide R&D information, an interactive search service is built based on deep learning models and morpheme analyzers. The deep learning model learns based on the log data loaded when using NTIS and interactive search services and understands the user's search intention. And it provides task information through step-by-step search. Understanding the search intent makes exception handling easier, and step-by-step search makes it easier and faster to obtain the desired information than integrated search. For future research, it is necessary to expand the range of information provided to users.

Low-Quality Banknote Serial Number Recognition Based on Deep Neural Network

  • Jang, Unsoo;Suh, Kun Ha;Lee, Eui Chul
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.224-237
    • /
    • 2020
  • Recognition of banknote serial number is one of the important functions for intelligent banknote counter implementation and can be used for various purposes. However, the previous character recognition method is limited to use due to the font type of the banknote serial number, the variation problem by the solid status, and the recognition speed issue. In this paper, we propose an aspect ratio based character region segmentation and a convolutional neural network (CNN) based banknote serial number recognition method. In order to detect the character region, the character area is determined based on the aspect ratio of each character in the serial number candidate area after the banknote area detection and de-skewing process is performed. Then, we designed and compared four types of CNN models and determined the best model for serial number recognition. Experimental results showed that the recognition accuracy of each character was 99.85%. In addition, it was confirmed that the recognition performance is improved as a result of performing data augmentation. The banknote used in the experiment is Indian rupee, which is badly soiled and the font of characters is unusual, therefore it can be regarded to have good performance. Recognition speed was also enough to run in real time on a device that counts 800 banknotes per minute.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Integration rough set theory and case-base reasoning for the corporate credit evaluation (러프집합이론과 사례기반추론을 결합한 기업신용평가 모형)

  • Roh, Tae-Hyup;Yoo Myung-Hwan;Han In-Goo
    • The Journal of Information Systems
    • /
    • v.14 no.1
    • /
    • pp.41-65
    • /
    • 2005
  • The credit ration is a significant area of financial management which is of major interest to practitioners, financial and credit analysts. The components of credit rating are identified decision models are developed to assess credit rating an the corresponding creditworthiness of firms an accurately ad possble. Although many early studies demonstrate a priori which of these techniques will be most effective to solve a specific classification problem. Recently, a number of studies have demonstrate that a hybrid model integration artificial intelligence approaches with other feature selection algorthms can be alternative methodologies for business classification problems. In this article, we propose a hybrid approach using rough set theory as an alternative methodology to select appropriate attributes for case-based reasoning. This model uses rough specific interest lies in lthe stable combining of both rough set theory to extract knowledge that can guide dffective retrevals of useful cases. Our specific interest lies in the stable combining of both rough set theory and case-based reasoning in the problem of corporate credit rating. In addition, we summarize backgrounds of applying integrated model in the field of corporate credit rating with a brief description of various credit rating methodologies.

  • PDF

Application of Reinforcement Learning in Detecting Fraudulent Insurance Claims

  • Choi, Jung-Moon;Kim, Ji-Hyeok;Kim, Sung-Jun
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.125-131
    • /
    • 2021
  • Detecting fraudulent insurance claims is difficult due to small and unbalanced data. Some research has been carried out to better cope with various types of fraudulent claims. Nowadays, technology for detecting fraudulent insurance claims has been increasingly utilized in insurance and technology fields, thanks to the use of artificial intelligence (AI) methods in addition to traditional statistical detection and rule-based methods. This study obtained meaningful results for a fraudulent insurance claim detection model based on machine learning (ML) and deep learning (DL) technologies, using fraudulent insurance claim data from previous research. In our search for a method to enhance the detection of fraudulent insurance claims, we investigated the reinforcement learning (RL) method. We examined how we could apply the RL method to the detection of fraudulent insurance claims. There are limited previous cases of applying the RL method. Thus, we first had to define the RL essential elements based on previous research on detecting anomalies. We applied the deep Q-network (DQN) and double deep Q-network (DDQN) in the learning fraudulent insurance claim detection model. By doing so, we confirmed that our model demonstrated better performance than previous machine learning models.

Deep learning platform architecture for monitoring image-based real-time construction site equipment and worker (이미지 기반 실시간 건설 현장 장비 및 작업자 모니터링을 위한 딥러닝 플랫폼 아키텍처 도출)

  • Kang, Tae-Wook;Kim, Byung-Kon;Jung, Yoo-Seok
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.24-32
    • /
    • 2021
  • Recently, starting with smart construction research, interest in technology that automates construction site management using artificial intelligence technology is increasing. In order to automate construction site management, it is necessary to recognize objects such as construction equipment or workers, and automatically analyze the relationship between them. For example, if the relationship between workers and construction equipment at a construction site can be known, various use cases of site management such as work productivity, equipment operation status monitoring, and safety management can be implemented. This study derives a real-time object detection platform architecture that is required when performing construction site management using deep learning technology, which has recently been increasingly used. To this end, deep learning models that support real-time object detection are investigated and analyzed. Based on this, a deep learning model development process required for real-time construction site object detection is defined. Based on the defined process, a prototype that learns and detects construction site objects is developed, and then platform development considerations and architecture are derived from the results.

Hybrid CNN-SVM Based Seed Purity Identification and Classification System

  • Suganthi, M;Sathiaseelan, J.G.R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.271-281
    • /
    • 2022
  • Manual seed classification challenges can be overcome using a reliable and autonomous seed purity identification and classification technique. It is a highly practical and commercially important requirement of the agricultural industry. Researchers can create a new data mining method with improved accuracy using current machine learning and artificial intelligence approaches. Seed classification can help with quality making, seed quality controller, and impurity identification. Seeds have traditionally been classified based on characteristics such as colour, shape, and texture. Generally, this is done by experts by visually examining each model, which is a very time-consuming and tedious task. This approach is simple to automate, making seed sorting far more efficient than manually inspecting them. Computer vision technologies based on machine learning (ML), symmetry, and, more specifically, convolutional neural networks (CNNs) have been widely used in related fields, resulting in greater labour efficiency in many cases. To sort a sample of 3000 seeds, KNN, SVM, CNN and CNN-SVM hybrid classification algorithms were used. A model that uses advanced deep learning techniques to categorise some well-known seeds is included in the proposed hybrid system. In most cases, the CNN-SVM model outperformed the comparable SVM and CNN models, demonstrating the effectiveness of utilising CNN-SVM to evaluate data. The findings of this research revealed that CNN-SVM could be used to analyse data with promising results. Future study should look into more seed kinds to expand the use of CNN-SVMs in data processing.

Predicting Urban Tourism Flow with Tourism Digital Footprints Based on Deep Learning

  • Fangfang Gu;Keshen Jiang;Yu Ding;Xuexiu Fan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1162-1181
    • /
    • 2023
  • Tourism flow is not only the manifestation of tourists' special displacement change, but also an important driving mode of regional connection. It has been considered as one of significantly topics in many applications. The existing research on tourism flow prediction based on tourist number or statistical model is not in-depth enough or ignores the nonlinearity and complexity of tourism flow. In this paper, taking Nanjing as an example, we propose a prediction method of urban tourism flow based on deep learning methods using travel diaries of domestic tourists. Our proposed method can extract the spatio-temporal dependence relationship of tourism flow and further forecast the tourism flow to attractions for every day of the year or for every time period of the day. Experimental results show that our proposed method is slightly better than other benchmark models in terms of prediction accuracy, especially in predicting seasonal trends. The proposed method has practical significance in preventing tourists unnecessary crowding and saving a lot of queuing time.

A TSK fuzzy model optimization with meta-heuristic algorithms for seismic response prediction of nonlinear steel moment-resisting frames

  • Ebrahim Asadi;Reza Goli Ejlali;Seyyed Arash Mousavi Ghasemi;Siamak Talatahari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.189-208
    • /
    • 2024
  • Artificial intelligence is one of the efficient methods that can be developed to simulate nonlinear behavior and predict the response of building structures. In this regard, an adaptive method based on optimization algorithms is used to train the TSK model of the fuzzy inference system to estimate the seismic behavior of building structures based on analytical data. The optimization algorithm is implemented to determine the parameters of the TSK model based on the minimization of prediction error for the training data set. The adaptive training is designed on the feedback of the results of previous time steps, in which three training cases of 2, 5, and 10 previous time steps were used. The training data is collected from the results of nonlinear time history analysis under 100 ground motion records with different seismic properties. Also, 10 records were used to test the inference system. The performance of the proposed inference system is evaluated on two 3 and 20-story models of nonlinear steel moment frame. The results show that the inference system of the TSK model by combining the optimization method is an efficient computational method for predicting the response of nonlinear structures. Meanwhile, the multi-vers optimization (MVO) algorithm is more accurate in determining the optimal parameters of the TSK model. Also, the accuracy of the results increases significantly with increasing the number of previous steps.