• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.024 seconds

Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 농도별 예측 모델 설계)

  • Kyoung-Woo Cho;Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.576-581
    • /
    • 2021
  • Compared to a low concentration, a high concentration clearly entails limitations in terms of predictive performance owing to differences in its frequency and environment of occurrence. To resolve this problem, in this study, an artificial intelligence neural network algorithm was used to classify low and high concentrations; furthermore, two prediction models trained using the characteristics of the classified concentration types were used for prediction. To this end, we constructed training datasets using weather and air pollutant data collected over a decade in the Cheonan region. We designed a DNN-based classification model to classify low and high concentrations; further, we designed low- and high-concentration prediction models to reflect characteristics by concentration type based on the low and high concentrations classified through the classification model. According to the results of the performance assessment of the prediction model by concentration type, the low- and high-concentration prediction accuracies were 90.38% and 96.37%, respectively.

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming

  • Cladera, Antoni;Perez-Ordonez, Juan L.;Martinez-Abella, Fernando
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.479-501
    • /
    • 2014
  • This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) technique, which is configured to generate symbolic regression from a set of experimental data by considering the interactions among precision, accuracy, safety and simplicity. The size effect and the influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 experimental tests on concrete beams from the literature are used. Three expressions of considerable simplicity, which significantly improve the shear strength prediction with respect to the formulations of the different studied codes, are proposed.

Study of integrated control system for factory automation (공장자동화를 위한 통합제어시스템에 관한 연구)

  • 최경현;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1245-1248
    • /
    • 1996
  • This paper describes a cell programming environment that deals with problems associated with programming Flexible Manufacturing Cells(FMCs). The environment consists of the cell programming editor and the automatic generation module. In the cell programming editor, cell programmers can develop cell programs using task level description set which supports task-oriented specifications for manipulation cell activities. This approach to cell programming reduces the amount of details that cell programmers need to consider and allows them to concentrate on the most important aspects of the task at hand. The automatic generation module is used to transform task specifications into executable programs used by cell constituents. This module is based on efficient algorithm and expert systems which can be used for optimal path planning of robot operations and optimal machining parameters of machine tool operations. The development tool in designing the environment is an object-oriented approach which provides a simple to use and intuitive user interface, and allows for an easy development of object models associated with the environment.

  • PDF

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.

A Study on Quantitative Space Analysis Model - Focused on a Visual Analysis and Image Analysis by Digital Image Processing - (정량적 공간분석 모델에 관한 연구 - 시각 분석과 영상처리에 의한 이미지 분석 모델을 중심으로 -)

  • 이혁준;이종석
    • Korean Institute of Interior Design Journal
    • /
    • no.37
    • /
    • pp.136-143
    • /
    • 2003
  • Users' demands on the space are changing in variety. These demands include reasonable space and form, harmonious composition with surroundings and esthetic satisfaction that could be brought by personal tastes and preferences. In addition, models that are introduced from designing process and from various forms tend to lack objective decision making standard. Accordingly it is difficult to find a clear alternative plan and process. In an effort to solve these problems, the objects of this study are; to propose an analysis model of image and space by using image process techniques that are on study in the field of artificial intelligence based on acquisition of digital image and to verify the application possibilities of such analysis model, 'Isovist' on quantitative analysis. The model can be applied with variable analysis model, as digital image process and other analysis model such as 'Isovist' It is possible that further study can complement problems from this study.

A study on Detecting the Safety helmet wearing using YOLOv5-S model and transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.302-309
    • /
    • 2022
  • Occupational safety accidents are caused by various factors, and it is difficult to predict when and why they occur, and it is directly related to the lives of workers, so the interest in safety accidents is increasing every year. Therefore, in order to reduce safety accidents at industrial fields, workers are required to wear personal protective equipment. In this paper, we proposes a method to automatically check whether workers are wearing safety helmets among the protective equipment in the industrial field. It detects whether or not the helmet is worn using YOLOv5, a computer vision-based deep learning object detection algorithm. We transfer learning the s model among Yolov5 models with different learning rates and epochs, evaluate the performance, and select the optimal model. The selected model showed a performance of 0.959 mAP.

A Survey on Feature Store (Feature 저장소 기술 동향)

  • Hur, S.J.;Kim, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • In this paper, we discussed the necessity and importance of introducing feature stores to establish a collaborative environment between data engineering work and data science work. We examined the technology trends of feature stores by analyzing the status of some major feature stores. Moreover, by introducing a feature store, we can reduce the cost of performing artificial intelligence (AI) projects and improve the performance and reliability of AI models and the convenience of model operation. The future task is to establish technical requirements for establishing a collaborative environment between data engineering work and data science work and develop a solution for providing a collaborative environment based on this.

Video augmentation technique for human action recognition using genetic algorithm

  • Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.327-338
    • /
    • 2022
  • Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.