• Title/Summary/Keyword: artificial intelligence-based models

Search Result 575, Processing Time 0.03 seconds

Training Dataset Generation through Generative AI for Multi-Modal Safety Monitoring in Construction

  • Insoo Jeong;Junghoon Kim;Seungmo Lim;Jeongbin Hwang;Seokho Chi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.455-462
    • /
    • 2024
  • In the construction industry, known for its dynamic and hazardous environments, there exists a crucial demand for effective safety incident prevention. Traditional approaches to monitoring on-site safety, despite their importance, suffer from being laborious and heavily reliant on subjective, paper-based reports, which results in inefficiencies and fragmented data. Additionally, the incorporation of computer vision technologies for automated safety monitoring encounters a significant obstacle due to the lack of suitable training datasets. This challenge is due to the rare availability of safety accident images or videos and concerns over security and privacy violations. Consequently, this paper explores an innovative method to address the shortage of safety-related datasets in the construction sector by employing generative artificial intelligence (AI), specifically focusing on the Stable Diffusion model. Utilizing real-world construction accident scenarios, this method aims to generate photorealistic images to enrich training datasets for safety surveillance applications using computer vision. By systematically generating accident prompts, employing static prompts in empirical experiments, and compiling datasets with Stable Diffusion, this research bypasses the constraints of conventional data collection techniques in construction safety. The diversity and realism of the produced images hold considerable promise for tasks such as object detection and action recognition, thus improving safety measures. This study proposes future avenues for broadening scenario coverage, refining the prompt generation process, and merging artificial datasets with machine learning models for superior safety monitoring.

A Computationally Effective Remote Health Monitoring Framework using AGTO-MLRC Models for CVD Diagnosis

  • Menda Ebraheem;Aravind Kumar Kondaji;Y Butchi Raju;N Bhupesh Kumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2512-2545
    • /
    • 2024
  • One of the biggest challenges for the medical professionals is spotting cardiovascular issues in the earliest stages. Around the world, Cardiovascular Diseases (CVD) are a major cause of death for almost 18 million people each year. Heart disease is therefore a serious concern that needs to be treated. The numerous elements that affect health, such as excessive blood pressure, elevated cholesterol, aberrant pulse rate, and many other factors, might make it challenging to detect heart disease. Consequently, early disease detection and the development of effective treatments can benefit greatly from the field of artificial intelligence. The purpose of this work is to develop a new IoT based healthcare monitoring framework for the prediction of CVD using machine learning algorithm. Here, the data preprocessing has been performed to create the normalized dataset for improving classification. Then, an Artificial Gorilla Troop Optimization (AGTO) algorithm is deployed to choose the most pertinent features from the normalized dataset. Moreover, the Multi-Linear Regression Classification (MLRC) model is also implemented for accurately categorizing the medical information as whether healthy or CVD affected. The results of the proposed AGTO-MLRC mechanism is validated and compared using the popular benchmarking datasets.

Utilization of Forecasting Accounting Earnings Using Artificial Neural Networks and Case-based Reasoning: Case Study on Manufacturing and Banking Industry (인공신경망과 사례기반추론을 이용한 기업회계이익의 예측효용성 분석 : 제조업과 은행업을 중심으로)

  • Choe, Yongseok;Han, Ingoo;Shin, Taeksoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.81-101
    • /
    • 2003
  • The financial statements purpose to provide useful information to decision-making process of business managers. The value-relevant information, however, embedded in the financial statement has been often overlooked in Korea. In fact, the financial statements in Korea have been utilized for nothing but account reports to Security Supervision Boards (SSB). The objective of this study is to develop earnings forecasting models through financial statement analysis using artificial intelligence (AI). AI methods are employed in forecasting earnings: artificial neural networks (ANN) for manufacturing industry and case~based reasoning (CBR) for banking industry. The experimental results using such AI methods are as follows. Using ANN for manufacturing industry records 63.2% of hit ratio for out-of-sample, which outperforms the logistic regression by around 4%. The experiment through CBR for banking industry shows 65.0% of hit ratio that beats the statistical method by 13.2% in holdout sample. Finally, the prediction results for manufacturing industry are validated through monitoring the shift in cumulative returns of portfolios based on the earning prediction. The portfolio with the firms whose earnings are predicted to increase is designated as best portfolio and the portfolio with the earnings-decreasing firms as worst portfolio. The difference between two portfolios is about 3% of cumulative abnormal return on average. Consequently, this result showed that the financial statements in Korea contain the value-relevant information that is not reflected in stock prices.

How Through-Process Optimization (TPO) Assists to Meet Product Quality

  • Klaus Jax;Yuyou Zhai;Wolfgang Oberaigner
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2024
  • This paper introduces Primetals Technologies' Through-Process Optimization (TPO) Services and Through-Process Quality Control (TPQC) System, which integrate domain knowledge, software, and automation expertise to assist steel producers in achieving operational excellence. TPQC collects high-resolution process and product data from the entire production route, providing visualizations and facilitating quality assurance. It also enables the application of artificial intelligence techniques to optimize processes, accelerate steel grade development, and enhance product quality. The main objective of TPO is to grow and digitize operational know-how, increase profitability, and better meet customer needs. The paper describes the contribution of these systems to achieving operational excellence, with a focus on quality assurance. Transparent and traceable production data is used for manual and automatic quality evaluation, resulting in product quality status and guiding the product disposition process. Deviation management is supported by rule-based and AI-based assistants, along with monitoring, alarming, and reporting functions ensuring early recognition of deviations. Embedded root cause proposals and their corrective and compensatory actions facilitate decision support to maintain product quality. Quality indicators and predictive quality models further enhance the efficiency of the quality assurance process. Utilizing the quality assurance software package, TPQC acts as a "one-truth" platform for product quality key players.

Explainable AI Application for Machine Predictive Maintenance (설명 가능한 AI를 적용한 기계 예지 정비 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.227-233
    • /
    • 2021
  • Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.

Path Loss Prediction Using an Ensemble Learning Approach

  • Beom Kwon;Eonsu Noh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • Predicting path loss is one of the important factors for wireless network design, such as selecting the installation location of base stations in cellular networks. In the past, path loss values were measured through numerous field tests to determine the optimal installation location of the base station, which has the disadvantage of taking a lot of time to measure. To solve this problem, in this study, we propose a path loss prediction method based on machine learning (ML). In particular, an ensemble learning approach is applied to improve the path loss prediction performance. Bootstrap dataset was utilized to obtain models with different hyperparameter configurations, and the final model was built by ensembling these models. We evaluated and compared the performance of the proposed ensemble-based path loss prediction method with various ML-based methods using publicly available path loss datasets. The experimental results show that the proposed method outperforms the existing methods and can predict the path loss values accurately.

Automatic Selection of Visual Information using Intelligent Content-Based Retrieva (지능형 내용기반검색을 이용한 시각정보 자동추출)

  • 송점동
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.69-81
    • /
    • 2001
  • In this paper, we examine work in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representations, exploit context and overage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving visual information at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent systems in the fields of cognitive psychology, artificial intelligence, semiotics. We also discuss how some of the principal ideas from these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we discribe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework that facilitate and enable intelligent content-based retrieval.

  • PDF

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence (인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발)

  • Jo, Ha-Nui;Park, Jisu;Yun, Yongju
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.