• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.027 seconds

Designing an App Inventor Curriculum for Computational Thinking based Non-majors Software Education (컴퓨팅 사고 기반의 비전공자 소프트웨어 교육을 위한 앱 인벤터 교육과정 설계)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • As the fourth industrial revolution becomes more popular and advanced services such as artificial intelligence and Internet of Things technology are widely commercialized, awareness of the importance of software is spreading. Recently, software education has been taught not only in elementary school and college but also in college. Also, there is a growing interest in computational thinking needed to solve problems through computing methodology and model. The purpose of this study is to design an app inventor course for non-majors software education based on computational thinking. As a result of the study, six detailed competencies of computational thinking were derived, and six detailed competencies were mapped to the app inventor learning elements. In addition, based on the computational thinking modeling, I designed an app inventor class for students who participated in IT curriculum of university liberal arts curriculum.

A Development of Intelligent Simulation Tools based on Multi-agent (멀티 에이전트 기반의 지능형 시뮬레이션 도구의 개발)

  • Woo, Chong-Woo;Kim, Dae-Ryung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.21-30
    • /
    • 2007
  • Simulation means modeling structures or behaviors of the various objects, and experimenting them on the computer system. And the major approaches are DEVS(Discrete Event Systems Specification). Petri-net or Automata and so on. But, the simulation problems are getting more complex or complicated these days, so that an intelligent agent-based is being studied. In this paper, we are describing an intelligent agent-based simulation tool, which can supports the simulation experiment more efficiently. The significances of our system can be described as follows. First, the system can provide some AI algorithms through the system libraries. Second, the system supports simple method of designing the simulation model, since it's been built under the Finite State Machine (FSM) structure. And finally, the system acts as a simulation framework by supporting user not only the simulation engine, but also user-friendly tools, such as modeler scriptor and simulator. The system mainly consists of main simulation engine, utility tools, and some other assist tools, and it is tested and showed some efficient results in the three different problems.

  • PDF

A study on the digital transformation strategy of a fashion brand - Focused on the Burberry case - (패션 브랜드의 디지털 트랜스포메이션 전략에 관한 연구 - 버버리 사례를 중심으로 -)

  • Kim, Soyoung;Ma, Jin Joo
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.5
    • /
    • pp.449-460
    • /
    • 2019
  • Today, the fashion business environment of the 4.0 generation is changing based on fashion technology combined with advanced digital technologies such as AI (Artificial Intelligence), big data and IoT (Internet of Things). "Digital Transformation" means a fundamental change and innovation in a digital paradigm including corporate strategy, organization, communication, and business model, based on the utilization of digital technology. Thus, this study examines digital transformation strategies through the fashion brand Burberry. The study contents are as follows. First, it examines the theoretical concept of digital transformation and its utilization status. Second, it analyzes the characteristics of Burberry's digital transformation based on its strategies. For the research methodology, a literature review was performed on books and papers, aligning with case studies through websites, social media, and news articles. The result showed that first, Burberry has reset their main target to Millennials who actively use mobile and social media, and continues to communicate with them by utilizing digital strategy in the entire management. Second, Burberry is quickly delivering consistent brand identity to consumers by internally creating and providing social media-friendly content. Third, they have started real-time product sales and services by using IT to enhance access to brands and to lead consumers towards more active participation. In this study, Burberry's case shows that digital transformation can contribute to increased brand value and sales, keeping up with the changes in the digital paradigm. Therefore, the study suggests that digital transformation will serve as an important business strategy for fashion brands in the future.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Implementation of Pre-Post Process for Accuraty Improvement of OCR Recognition Engine Based on Deep-Learning Technology (딥러닝 기반 OCR 인식 엔진의 정확도 향상을 위한 전/후처리기 기술 구현)

  • Jang, Chang-Bok;Kim, Ki-Bong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.163-170
    • /
    • 2022
  • With the advent of the 4th Industrial Revolution, solutions that apply AI technology are being actively developed. Since 2017, the introduction of business automation solutions using AI-based Robotic Process Automation (RPA) has begun in the financial sector and insurance companies, and recently, it is entering a time when it spreads past the stage of introducing RPA solutions. Among the business automation using these RPA solutions, it is very important how accurately textual information in the document is recognized for business automation using various documents. Such character recognition has recently increased its accuracy by introducing deep learning technology, but there is still no recognition model with perfect recognition accuracy. Therefore, in this paper, we checked how much accuracy is improved when pre- and post-processor technologies are applied to deep learning-based character recognition engines, and implemented RPA recognition engines and linkage technologies.

A Study on the Privacy Paradox in the IoT-based Smart Home Camera Usage Environment: Focusing on a Comparative Study of User Experience (IoT 기반 스마트 홈카메라 이용환경에서의 프라이버시 패러독스 현상에 관한 연구: 사용경험 비교연구를 중심으로)

  • Lyu, JinDan;Kwon, Sundong
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.6
    • /
    • pp.145-161
    • /
    • 2021
  • Recently, as personal information utilization devices such as IoT, artificial intelligence, and wearable devices that focus on the individual have spread, privacy violations are also increasing. However, the privacy paradox of providing personal information to enjoy services while worrying is getting stronger. However, there are still preliminary studies on this. In this study, an intelligent home camera based on IoT technology was selected as a research object, and whether privacy paradox exists in the IoT environment, including smart home camera, was studied. To this end, the effect of perceived usefulness, a benefit factor of smart home camera use, and privacy concern, a risk factor, on intention to use was verified. In addition, it was investigated whether the relationship between privacy concerns and intention to use differs according to the presence or absence of use experience. In order to verify the research model, a survey was conducted with people with and without experience in using smart home cameras, and a total of 298 data samples were used for statistical analysis. As a result of the analysis, it was found that both perceived usefulness and privacy concerns had a positive effect on the intention to use, proving that privacy paradox exists in the IoT-based smart home camera environment. In addition, by analyzing the fact that privacy concerns have different effects on usage intentions depending on the user experience, it was verified that those with experience have a strong privacy paradox and those without experience have a weak privacy paradox. This study is meaningful because it seeks strategic implications to improve service and business performance by understanding the relationship between privacy attitudes and behaviors of IoT service providers, including smart home cameras.

Sustainable Smart City Building-energy Management Based on Reinforcement Learning and Sales of ESS Power

  • Dae-Kug Lee;Seok-Ho Yoon;Jae-Hyeok Kwak;Choong-Ho Cho;Dong-Hoon Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1123-1146
    • /
    • 2023
  • In South Korea, there have been many studies on efficient building-energy management using renewable energy facilities in single zero-energy houses or buildings. However, such management was limited due to spatial and economic problems. To realize a smart zero-energy city, studying efficient energy integration for the entire city, not just for a single house or building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of Chungbuk Innovation City. Chungbuk successfully realized energy independence by converging new and renewable energy facilities for the first time in South Korea. This study analyzes energy data collected from public buildings in that town every minute for a year. We propose a smart city building-energy management model based on the results that combine various renewable energy sources with grid power. Supervised learning can determine when it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular pattern or rule for energy use. However, it is more appropriate to use reinforcement learning to maximize rewards in an environment with numerous variables that change every moment. Therefore, we propose a power distribution algorithm based on reinforcement learning that considers the sales of Energy Storage System power from surplus renewable energy. Finally, we confirm through economic analysis that a 10% saving is possible from this efficiency.

Simulation-based Yield-per-recruit Analysis of Sandfish Arctoscopus japonicus in the East Sea of Korea Subjected to Natural Mortality Conditions (모의실험을 통한 한국 동해 도루묵(Arctoscopus japonicus)의 자연사망 계수 조건에 따른 가입당 생산 분석)

  • Kyunghwan Lee;Ho Young Soh;Giphil Cho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.3
    • /
    • pp.331-340
    • /
    • 2023
  • To estimate the biological reference points, suitable for fisheries management of sandfish Arctoscopus japonicas in the East Sea of Korea, we simulated the yield-per-recruit (Y/R) from age 0 to 6 (0-2,555 days). The stimulation was based on two instantaneous natural mortality conditions: size-dependent (Mt, d-1) and constant (Mcons, d-1); Subsequently, the biological reference points of the two mortality conditions was compared. Mt decreased from 0.0075 d-1 to 0.0018 d-1 depending on growth, and Mcons remained constant at 0.0011 d-1 for all ages. Our Y/R model showed that the maximum yield of Mcons was 14 times higher than that of the Mt. The length at first capture to maximize the harvest at the F0.1 points of the two natural mortality conditions was Lc,t=10.2 cm (TL) and Lc,cons=17 cm (TL). We concluded that Mt was more suitable for estimating M than Mcons; this is because Lc,t showed minimal difference from the current fishing regulations (11 cm, TL), and Mt reflected more biological characteristics than Mcons. We suggest that 10.2 cm and 0.8 as the suitable length at first capture and corresponding age, respectively for efficient fisheries management of sandfish.

Development of Workplace Risk Assessment System Based on AI Video Analysis

  • Jeong-In Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 2024
  • In this paper, we develop 'the Danger Map' of a workplace to identify risk and harmful factors by analyzing images of each process within the manufacturing plant site using artificial intelligence (AI). We proposed a system that automatically derives 'the risk and safety levels' based on the frequency and intensity derived from this Danger Map in accordance with actual field conditions and applies them to similar manufacturing industries. In particular, in the traditional evaluation method of manually evaluating the risk of a workplace using Excel, the risk level for each risk and harmful factor acquired from the video is automatically calculated and evaluated to ensure safety through the system and calculate the safety level, so that the company can take appropriate actions accordingly. and measures were prepared. To automate safety calculation and evaluation, 'Heinrich's law' was used as a model, and a 5X4 point evaluation scale was calculated for risky behavior patterns. To demonstrate this system, we applied it to a casting factory and were able to save 2 people the time and labor required to calculate safety each month.

Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data (전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여)

  • Chae-Yeon Shim;Gyeong-Min Baek;Hyun-Su Park;Jong-Yeon Park
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.