Currently many non-traditional application areas such as artificial intelligence and web databases require advanced modeling power than the existing relational data model. In those application areas, object-oriented database (OODB) is better data model since an OODB can providemodeling power as grouping similar objects into class, and organizing all classes into a hierarchy where a subclass inherits all definitions from its superclasses. The purpose of this paper is to develop an OODB concurrency control scheme dealing with multiple inheritance. The proposed scheme, called Multiple Inheritance Implicit Locking (MIIL), is based on so-called implicit locking. In the proposed scheme, we eliminate redundant locks that are necessary in the existing implicit locking scheme. Intention locks are required as the existing implicit locking scheme. In this paper, it is shown that MIIL has less locking overhead than implicit locking does. We use only OODB inheritance hierarchies, single inheritance and multiple inheritance so that no additional overhead is necessary for reducing locking overhead.
Recently, due to global warming, climate change has affected short time concentrated local rain and unexpected heavy rain which is increasingly causing life and property damage. Therefore, this paper studies the characteristic of localized heavy rain and flash flood in Nakdong basin study area by applying Data Mining method to predict flood and constructing water level predicting model. For the verification neural network from Data Mining method and hydraulic flood routing was used for flood from July 1989 to September 1999 in Nakdong point and Iseon point was used to compare flood level change between observed water level and SAM (Slope Area Method). In this research, the study area was divided into three cases in which each point's flood discharge, water level was considered to construct the model for hydraulic flood routing and neural network based on artificial intelligence which can be made from simple input data used for comparison analysis and comparison evaluation according to actual water level and from the model.
Journal of Information Technology Applications and Management
/
v.26
no.3
/
pp.121-134
/
2019
The Fourth Industrial Revolution has differentiated technologies such as artificial intelligence, IoT(Internet of things), big data, and mobile. As the civilization develops more and more, humanity enjoy the cultural activities more than economic activity for the food and shelter. The platform structure based on the advanced information technology of the present will expand the cultural contents area in a variety of ways. Cultural contents respond sensitively to changes in consumer and will be useful experiences of human activities. Therefore, it should be noted again that the contents industry should not be limited to the discussion of the application of the fourth technology, but should be produced with emphasis on useful experiences of human being. In other words, the discussion of human activities around cultural contents should be focused on how to apply beyond the use of fourth industrial technology. Therefore, it is necessary to analyze the basis of the successful storytelling of the planning stage to connect the fourth industrial technology and human useful experience as a method for developing cultural contents, and to build and propose a model as a strategic method. This study analyzes domestic and foreign cases made by using big data among the visual contents which show continuous increase of consumption among culture industry field, and draws success factors and limit points. Next, we extract what is the successful matching factor that influenced consumer 's consciousness, and find out that the structure of culture prototype has been applied in the long history of mankind, and presents it as a storytelling model. Through the above research, this study aims to present a new interpretation and creative activity of cultural contents by presenting a storytelling model as a methodology for connecting creative knowledge, away from the general interpretation of social phenomenon applied with big data.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.9
no.3
/
pp.25-30
/
2009
Recent days intellectual systems using reinforcement learning are being researched at various fields of game and web searching applications. A good training models are called to be fitted with trainning data and also classified with new records accurately. A overfitted model with training data may possibly bring the unfavored fallacy of hasty generalization. But it would be unavoidable in actual world. The entropy and mutation model are suggested to reduce the overfitting problems on this paper. It explains variation of entropy and artificial development of entropy in datamining, which can tell development of mutation to survive in nature world. Periodical generation of maximum entropy are introduced in this paper to reduce overfitting. Maximum entropy model can be considered as a periodical generalization in intensified process of intellectual web searching.
Journal of the Korea Institute of Building Construction
/
v.16
no.4
/
pp.331-339
/
2016
According to high-rise, complexation, and enlargement of buildings, various construction methods are being developed, and the significance of construction method selection about main work types has emerged as a major interest. However, it has been pointed out that hand-on workers cannot consider project characteristics carefully, and they lack an objective standard or reference for main construction method selection. Hence, the selection is being made depending on hand-on workers' experience and intuition. To solve this problem, various studies have proceeded for construction method selection of main work types using Artificial Intelligence like Fuzzy, AHP and Case-based reasoning. It is difficult to apply many different kinds of construction method selection to every main work type with consideration for characteristics of work types and condition of a construction site when selecting construction method in the field. Accordingly, this study proposed the decision-making model which can apply to fields easily. Using matrix analysis and liner transformation, this study verified consistency of study models applied in the process of soil retaining selection with a case study.
Seo, Hyeon-Ho;Kim, Jae-Woong;Kim, Dong-Hyun;Park, Seong-Hyun
Journal of the Korea Convergence Society
/
v.12
no.10
/
pp.45-53
/
2021
In our technology-driven world, various methods for teaching in an educational venue or in a simulated environment have been suggested especially for computer and coding education. In particular, IoT related education has been made possible owing to the industrial developments that have occurred in various fields since the Fourth Industrial Revolution. The proposed model allows various IoT systems to be indirectly built; it provides an inexpensive learning method by applying a simulation system in a 3D environment. The model is implemented on Virtual Remote IO based on the Arduino platform, thereby reducing the cost of building an education system. In addition various education-related content can be provided to learners through such an indirectly developed system. Test code was written to check the consistency of an operation between the real system and the virtual system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.11
/
pp.5568-5587
/
2018
This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.1
/
pp.93-109
/
2022
Today, digital transformation in providing service value to companies that combine service and technology is becoming a necessity. In the transition period of digital transformation, various factors such as data, artificial intelligence technology, and partnerships can become competitive factors. In particular, digital transformation, which combines information and services with customers, creates a new business model that changes the entire industry and is presented as core competitiveness that creates customer value. From these aspects, the purpose of this case study is to derive competitive advantages on digital transformation using the case of company S. First, the study analyzes the same type of industry based on the case of app service. Second, this study presents preference factors in the operational process to enhance competitiveness by expanding user participation in accommodation reservation services. In addition, the customer service value model provides through the analysis of the five competitive factors in the operational process. This study elaborates the implications of the customer service value creation model in terms of new opportunities and challenges in digital transformation as a new customer service strategy.
This study is a case of convergence education using the AI model of entry in elementary schools. The subject is English, and the class was conducted based on the image learning model among the convergence activities with the art department drawing and the AI model of the entry. In order to effectively achieve the learning goals of speaking and writing in English education. The class was designed by combining art and SW. Students experienced communication using AI, improved confidence, and were able to improve creativity and communication skills by expressing not only listening and speaking but also expressing through various media such as pictures and photos. In addition, in order to find out the effectiveness of the class, a survey was conducted on students and the results were analyzed. As a result of the analysis, it was found that it had a positive effect on students' participation rate, degree of understanding AI after class, interest in AI, satisfaction with AI classes.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.35
no.2
/
pp.134-142
/
2022
As industry and technology go through advancement, it is hard to search new materials which satisfy various standards through conventional trial-and-error based research methods. Crystal Graph Convolutional Neural Network(CGCNN) is a neural network which uses material's features as train data, and predicts the material properties(formation energy, bandgap, etc.) much faster than first-principles calculation. This report introduces how to train the CGCNN model which predicts the formation energy using open database. It is anticipated that with a simple programming skill, readers could construct a model using their data and purpose. Developing machine learning model for materials science is going to help researchers who should explore large chemical and structural space to discover materials efficiently.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.