• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.029 seconds

Hybrid machine learning with moth-flame optimization methods for strength prediction of CFDST columns under compression

  • Quang-Viet Vu;Dai-Nhan Le;Thai-Hoan Pham;Wei Gao;Sawekchai Tangaramvong
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.679-695
    • /
    • 2024
  • This paper presents a novel technique that combines machine learning (ML) with moth-flame optimization (MFO) methods to predict the axial compressive strength (ACS) of concrete filled double skin steel tubes (CFDST) columns. The proposed model is trained and tested with a dataset containing 125 tests of the CFDST column subjected to compressive loading. Five ML models, including extreme gradient boosting (XGBoost), gradient tree boosting (GBT), categorical gradient boosting (CAT), support vector machines (SVM), and decision tree (DT) algorithms, are utilized in this work. The MFO algorithm is applied to find optimal hyperparameters of these ML models and to determine the most effective model in predicting the ACS of CFDST columns. Predictive results given by some performance metrics reveal that the MFO-CAT model provides superior accuracy compared to other considered models. The accuracy of the MFO-CAT model is validated by comparing its predictive results with existing design codes and formulae. Moreover, the significance and contribution of each feature in the dataset are examined by employing the SHapley Additive exPlanations (SHAP) method. A comprehensive uncertainty quantification on probabilistic characteristics of the ACS of CFDST columns is conducted for the first time to examine the models' responses to variations of input variables in the stochastic environments. Finally, a web-based application is developed to predict ACS of the CFDST column, enabling rapid practical utilization without requesting any programing or machine learning expertise.

File Type Identification Using CNN and GRU (CNN과 GRU를 활용한 파일 유형 식별 및 분류)

  • Mingyu Seong;Taeshik Shon
    • Journal of Platform Technology
    • /
    • v.12 no.2
    • /
    • pp.12-22
    • /
    • 2024
  • With the rapid increase in digital data in modern society, digital forensics plays a crucial role, and file type identification is one of its integral components. Research on the development of identification models utilizing artificial intelligence is underway to identify file types swiftly and accurately. However, existing studies do not support the identification of file types with high domestic usage rates, making them unsuitable for use within the country. Therefore, this paper proposes a more accurate file type identification model using Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU). To overcome limitations of existing methods, the proposed model demonstrates superior performance on the FFT-75 dataset, effectively identifying file types with high domestic usage rates such as HWP, ALZ, and EGG. The model's performance is validated by comparing it with three existing research models (CNN-CO, FiFTy, CNN-LSTM). Ultimately, the CNN and GRU based file type identification and classification model achieved 68.2% accuracy on 512-byte file fragments and 81.4% accuracy on 4096-byte file fragments.

  • PDF

Automatically Diagnosing Skull Fractures Using an Object Detection Method and Deep Learning Algorithm in Plain Radiography Images

  • Tae Seok, Jeong;Gi Taek, Yee; Kwang Gi, Kim;Young Jae, Kim;Sang Gu, Lee;Woo Kyung, Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.

Impact of Ensemble Member Size on Confidence-based Selection in Bankruptcy Prediction (부도예측을 위한 확신 기반의 선택 접근법에서 앙상블 멤버 사이즈의 영향에 관한 연구)

  • Kim, Na-Ra;Shin, Kyung-Shik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • The prediction model is the main factor affecting the performance of a knowledge-based system for bankruptcy prediction. Earlier studies on prediction modeling have focused on the building of a single best model using statistical and artificial intelligence techniques. However, since the mid-1980s, integration of multiple techniques (hybrid techniques) and, by extension, combinations of the outputs of several models (ensemble techniques) have, according to the experimental results, generally outperformed individual models. An ensemble is a technique that constructs a set of multiple models, combines their outputs, and produces one final prediction. The way in which the outputs of ensemble members are combined is one of the important issues affecting prediction accuracy. A variety of combination schemes have been proposed in order to improve prediction performance in ensembles. Each combination scheme has advantages and limitations, and can be influenced by domain and circumstance. Accordingly, decisions on the most appropriate combination scheme in a given domain and contingency are very difficult. This paper proposes a confidence-based selection approach as part of an ensemble bankruptcy-prediction scheme that can measure unified confidence, even if ensemble members produce different types of continuous-valued outputs. The present experimental results show that when varying the number of models to combine, according to the creation type of ensemble members, the proposed combination method offers the best performance in the ensemble having the largest number of models, even when compared with the methods most often employed in bankruptcy prediction.

Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology (PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용)

  • Wang, Haitao;Min, Byung-Won
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • In recent years, with the rapid development of large and medium-sized urban rail transit in China, the total operating mileage of high-speed railway and the total number of EMUs(Electric Multiple Units) are rising. The system complexity of high-speed EMU is constantly increasing, which puts forward higher requirements for the safety of equipment and the efficiency of maintenance.At present, the maintenance mode of high-speed EMU in China still adopts the post maintenance method based on planned maintenance and fault maintenance, which leads to insufficient or excessive maintenance, reduces the efficiency of equipment fault handling, and increases the maintenance cost. Based on the intelligent operation and maintenance technology of PHM(prognostics and health management). This thesis builds an integrated PHM platform of "vehicle system-communication system-ground system" by integrating multi-source heterogeneous data of different scenarios of high-speed EMU, and combines the equipment fault mechanism with artificial intelligence algorithms to build a fault prediction model for traction motors of high-speed EMU.Reliable fault prediction and accurate maintenance shall be carried out in advance to ensure safe and efficient operation of high-speed EMU.

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

Comparison on the Deep Learning Performance of a Field of View Variable Color Images of Uterine Cervix (컬러 자궁경부 영상에서 딥러닝 기법에서의 영상영역 처리 방법에 따른 성능 비교 연구)

  • Seol, Yu Jin;Kim, Young Jae;Nam, Kye Hyun;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.812-818
    • /
    • 2020
  • Cervical cancer is the second most common female cancer in the world. In Korea, cervical cancer accounts for 13 percent of female cancers and 4,200 cases occur annually[1]. The purpose of this study is to use a deep learning model to identify the possibility of lesions in the cervix and to evaluate the efficient image preprocessing in order to diagnose diverse types of cervix in form. The study used 4,107 normal photographs of uterine cervix and 6,285 abnormal photographs of uterine cervix. Two types of image preprocessing were resized to square. The methods are cropping based on height and filling the space up and down with black images. In addition, all images were resampled to 256×256. The average accuracy of cropped cases is 94.15%. The average accuracy of the filled cases is 93.41%. According to the study, the model performance of cropped data was slightly better. But there were several images that were not accurately classified. Therefore, the additional experiment with pre-treatment process based on cropping is needed to cover images of the cervix in more detail.

Neural Machine translation specialized for Coronavirus Disease-19(COVID-19) (Coronavirus Disease-19(COVID-19)에 특화된 인공신경망 기계번역기)

  • Park, Chan-Jun;Kim, Kyeong-Hee;Park, Ki-Nam;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.7-13
    • /
    • 2020
  • With the recent World Health Organization (WHO) Declaration of Pandemic for Coronavirus Disease-19 (COVID-19), COVID-19 is a global concern and many deaths continue. To overcome this, there is an increasing need for sharing information between countries and countermeasures related to COVID-19. However, due to linguistic boundaries, smooth exchange and sharing of information has not been achieved. In this paper, we propose a Neural Machine Translation (NMT) model specialized for the COVID-19 domain. Centering on English, a Transformer based bidirectional model was produced for French, Spanish, German, Italian, Russian, and Chinese. Based on the BLEU score, the experimental results showed significant high performance in all language pairs compared to the commercialization system.

A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification (Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안)

  • Lee, Ko-Eun;Yu, Young-Su;Ha, Dae-Mok;Koo, Bon-Sang;Lee, Kwan-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.