• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.025 seconds

Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning (딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가)

  • Kim, Kyung-Nam;Kim, Seon-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.385-391
    • /
    • 2022
  • Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM (LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and in based on artificial intelligence-based HPAI spread analysis and patterning. The model that is actively used in time series and text mining recently is LSTM (Long Short-Term Memory Models) model utilizing deep learning model structure. The LSTM model is a model that emerged to resolve the Long-Term Dependency Problem that occurs during the Backpropagation Through Time (BPTT) process of RNN. LSTM models have resolved the problem of forecasting very well using variable sequence data, and are still widely used.In this paper study, we used the data of the Call Detailed Record (CDR) provided by KT to identify the migration path of people who are expected to be closely related to the virus. Introduce the results of predicting the path of movement by learning the LSTM model using the path of the person concerned. The results of this study could be used to predict the route of HPAI propagation and to select routes or areas to focus on quarantine and to reduce HPAI spread.

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

Concurrent Detection for Vehicles and Lanes Using Light-Weight Model of Multi-Task CNN (멀티 테스크 CNN의 경량화 모델을 이용한 차량 및 차선의 동시 검출)

  • Shin, Hyeon-Sik;Kim, Hyung-Won;Hong, Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.367-373
    • /
    • 2022
  • As deep learning-based autonomous driving technology develops, artificial intelligence models for various purposes have been studied. Based on these studies, several models were used simultaneously to develop autonomous driving systems. It can occur by increasing hardware resource consumption. We propose a multi-tasks model using a shared backbone to solve this problem. This can solve the increase in the number of backbones for using AI models. As a result, in the proposed lightweight model, the model parameters could be reduced by more than 50% compared to the existing model, and the speed could be improved. In addition, each lane can be classified through lane detection using the instance segmentation method. However, further research is needed on the decrease in accuracy compared to the existing model.

Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction (시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발)

  • Seo, Seunghwan;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.5-17
    • /
    • 2023
  • The advancement in large-scale underground excavation in urban areas necessitates monitoring and predicting technologies that can pre-emptively mitigate risk factors at construction sites. Traditionally, two methods predict the deformation of retaining walls induced by excavation: empirical and numerical analysis. Recent progress in artificial intelligence technology has led to the development of a predictive model using machine learning techniques. This study developed a model for predicting the deformation of a retaining wall under construction using a boosting-based algorithm and an ensemble model with outstanding predictive power and efficiency. A database was established using the data from the design-construction-maintenance process of the underground retaining wall project in a manifold manner. Based on these data, a learning model was created, and the performance was evaluated. The boosting and ensemble models demonstrated that wall deformation could be accurately predicted. In addition, it was confirmed that prediction results with the characteristics of the actual construction process can be presented using data collected from ground measurements. The predictive model developed in this study is expected to be used to evaluate and monitor the stability of retaining walls under construction.

A Deep Learning-Based Image Recognition Model for Illegal Parking Enforcement (불법 주정차 단속을 위한 딥러닝 기반 이미지 인식 모델)

  • Min Kyu Cho;Minjun Kim;Jae Hwan Kim;Jinwook Kim;Byungsun Hwang;Seongwoo Lee;Joonho Seon;Jin Young Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.59-64
    • /
    • 2024
  • Recently, research on the convergence of drones and artificial intelligence technologies have been conducted in various industrial fields. In this paper, we propose an illegal parking vehicle recognition model using deep learning-based object recognition and classification algorithms. The model of object recognition and classification consist of YOLOv8 and ResNet18, respectively. The proposed model was trained using image data collected in general road environment, and the trained model showed high accuracy in determining illegal parking. From simulation results, it was confirmed that the proposed model has generalization performance to identify illegal parking vehicles from various images.

Development of ITB Risk Mgt. Model Based on AI in Bidding Phase for Oversea EPC Projects (플랜트 EPC 해외 사업을 위한 입찰단계 시 AI 기반의 ITB Risk 관리 모델 개발)

  • Lee, Don-Hee;Yoon, Gun-Ho;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.151-160
    • /
    • 2019
  • EPC companies to continue operating overseas, it is increasingly becoming apparent that risk is no longer something to be avoided but a subject to be managed. During the bidding stage, the requirements, specifications and project line items within the bid package must be studied in details to analyze the various risk factors in order to avoid cost overruns. However, reviewing vast quantities of bidding documents is time consuming and labor intensive and is not an easy task and this is where automated information technology can help. For this study, I have constructed an ITB analysis model based on Watson AI that can analyze and apply vast amount of documents more effectively in a short time. Configuration of the Watson Explorer AI architecture for AI-based ITB risk management model research, the selection of learning procedures and analysis subjects, and the performance evaluation criteria were defined, and a test bed was constructed to conduct a pilot research. Consequently, I verified the effectiveness of the analytical time reduction and the quality of its results and VOC operations by professionals.

Early Prediction Model of Student Performance Based on Deep Neural Network Using Massive LMS Log Data (대용량 LMS 로그 데이터를 이용한 심층신경망 기반 대학생 학업성취 조기예측 모델)

  • Moon, Kibum;Kim, Jinwon;Lee, Jinsook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.1-10
    • /
    • 2021
  • Log data accumulated in the Learning Management System (LMS) provide high-quality information for the learning process of students. Until now, various studies have been conducted to predict students' academic achievement using LMS log data. However, previous studies were based on relatively small sample sizes of students and courses, limiting the possibility of generalization. This study developed and validated a deep neural network model for the early prediction of academic achievement of college students using massive LMS log data. To this end, we used 78,466,385 cases of LMS log data and 165,846 cases of grade data. The proposed model predicted the excellent-grade students with a high level of accuracy from the beginning of the semester. Meanwhile, the prediction accuracy for the moderate and underachieving groups was relatively low, but the accuracy improved as the time points of the prediction were delayed. This study is meaningful in that we developed an early prediction model based on a deep neural network with sufficient accuracy for practical utilization by only using LMS log data.

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.385-394
    • /
    • 2022
  • Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.