• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.03 seconds

A Model for Minimum Price Search of Processed Food Items on Online Platforms Based on Quantity and Weight (온라인 가공식품의 수량과 중량에 따른 최저가격 검색 모델)

  • Tae-Min Choi;Heui-Seok Lim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.458-460
    • /
    • 2023
  • 가공식품이라는 특정 도메인에서는 기존 검색엔진에서 많이 활용되는 BM25 만을 가지고 최저가 검색하는 데는 어려움이 있다. 본 논문에서는 BM25 외에도 검색의 정확성을 높이기 위해 HuggingFace 에 공개되어 있는 KoELECTRA 를 활용하여 개체명 인식(Named Entity Recognition 과 이진 분류모델(Binary Classification)을 Fine-tuning 하고 BM25 와 연계하여 구축한 검색시스템을 제안한다. 기존의 BM25 대비 성능 평가를 통해 효과를 검증하였다.

A NON-OVERLAPPING DOMAIN DECOMPOSITION METHOD FOR A DISCONTINUOUS GALERKIN METHOD: A NUMERICAL STUDY

  • Eun-Hee Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.419-431
    • /
    • 2023
  • In this paper, we propose an iterative method for a symmetric interior penalty Galerkin method for heterogeneous elliptic problems. The iterative method consists mainly of two parts based on a non-overlapping domain decomposition approach. One is an intermediate preconditioner constructed by understanding the properties of the discontinuous finite element functions and the other is a preconditioning related to the dual-primal finite element tearing and interconnecting (FETI-DP) methodology. Numerical results for the proposed method are presented, which demonstrate the performance of the iterative method in terms of various parameters associated with the elliptic model problem, the finite element discretization, and non-overlapping subdomain decomposition.

Generalized wheat head Detection Model Based on CutMix Algorithm (CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델)

  • Juwon Yeo;Wonjun Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

Anomaly Detection System for Solar Power Distribution Panels utilizing Thermal Images

  • Kwang-Seong Shin;Jong-Chan Kim;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.159-164
    • /
    • 2024
  • This study aimed to develop an advanced anomaly-detection system tailored for solar power distribution panels using thermal imaging cameras to ensure operational stability. It addresses the imperative shift toward digitalized safety management in electrical facilities, transcending the limitations of conventional empirical methodologies. Our proposed system leverages a faster R-CNN-based artificial intelligence model optimized through meticulous hyperparameter tuning to efficiently detect anomalies in distribution panels. Through comprehensive experimentation, we validated the efficacy of the system in accurately identifying anomalies, thereby propelling safety protocols forward during the fourth industrial revolution. This study signifies a significant stride toward fortifying the integrity and resilience of solar power distribution systems, which is pivotal for adapting to emerging technological paradigms and evolving safety standards in the energy sector. These findings offer valuable insights for enhancing the reliability and efficiency of safety management practices and fostering a safer and more sustainable energy landscape.

Automation of M.E.P Design Using Large Language Models (대형 언어 모델을 활용한 설비설계의 자동화)

  • Park, Kyung Kyu;Lee, Seung-Been;Seo, Min Jo;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.237-238
    • /
    • 2023
  • Urbanization and the increase in building scale have amplified the complexity of M.E.P design. Traditional design methods face limitations when considering intricate pathways and variables, leading to an emergent need for research in automated design. Initial algorithmic approaches encountered challenges in addressing complex architectural structures and the diversity of M.E.P types. However, with the launch of OpenAI's ChatGPT-3.5 beta version in 2022, new opportunities in the automated design sector were unlocked. ChatGPT, based on the Large Language Model (LLM), has the capability to deeply comprehend the logical structures and meanings within training data. This study analyzed the potential application and latent value of LLMs in M.E.P design. Ultimately, the implementation of LLM in M.E.P design will make genuine automated design feasible, which is anticipated to drive advancements across designs in the construction sector.

  • PDF

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Optimization of intelligent prosthetic hands using artificial neural networks and nanoscale technologies for enhanced performance

  • Jialing Li;Gongxing Yan;Zefang Wang;Belgacem Bouallegue;Tamim Alkhalifah
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.369-383
    • /
    • 2024
  • Annular nano-electromechanical systems (NEMS) in intelligent prosthetic hands enhance precision by serving as highly sensitive sensors for detecting pressure, vibrations, and deformations. This improves feedback and control, enabling users to modulate grip strength and tactile interaction with objects more effectively, enhancing prosthetic functionality. This research focuses on the electro-thermal buckling behavior of multi-directional poroelastic annular NEMS used as temperature sensors in airplanes. In the present study, thermal buckling performance of nano-scale annular functionally graded plate structures integrated with piezoelectric layers under electrical and extreme thermal loadings is investigated. In this regard, piezoelectric layers are placed on a disk made of metal matrix composite with graded properties in three radials, thickness and circumferential directions. The grading properties obey the power-law distribution. The whole structure is embedded in thermal environment. To model the mechanical behavior of the structure, a novel four-variable refined quasi-3D sinusoidal shear deformation theory (RQ-3DSSDT) is engaged in obtaining displacement field in the whole structure. The validity of the results is examined by comparing to a similar problem published in literature. The results of the buckling behavior of the structure in different boundary conditions are presented based on the critical temperature rise and critical external voltage. It is demonstrated that increase in the nonlocal and gradient length scale factor have contradicting effects on the critical temperature rise. On the other hand, increase in the applied external voltage cause increase in the critical temperature. Effects of other parameters like geometrical parameters and grading indices are presented and discussed in details.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

Detail Focused Image Classifier Model for Traditional Images (전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기)

  • Kim, Kuekyeng;Hur, Yuna;Kim, Gyeongmin;Yu, Wonhee;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.85-92
    • /
    • 2017
  • As accessibility toward traditional cultural contents drops compared to its increase in production, the need for higher accessibility for continued management and research to exist. For this, this paper introduces an image classifier model for traditional images based on artificial neural networks, which converts the input image's features into a vector space and by utilizing a RNN based model it recognizes and compares the details of the input which enables the classification of traditional images. This enables the classifiers to classify similarly looking traditional images more precisely by focusing on the details. For the training of this model, a wide range of images were arranged and collected based on the format of the Korean information culture field, which contributes to other researches related to the fields of using traditional cultural images. Also, this research contributes to the further activation of demand, supply, and researches related to traditional culture.