• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,231, Processing Time 0.026 seconds

Development of CanSat System for Vehicle Tracking based on Jetson Nano (젯슨 나노 기반의 차량 추적 캔위성 시스템 개발)

  • Lee, Younggun;Lee, Sanghyun;You, Seunghoon;Lee, Sangku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.556-558
    • /
    • 2022
  • This paper proposes a CanSat system with a vehicle tracking function based on Jetson Nano, a high-performance small computer capable of operating artificial intelligence algorithms. The CanSat system consists of a CanSat and a ground station. The CanSat falls in the atmosphere and transmits the data obtained through the installed sensors to the ground station using wireless communication. The existing CanSat is limited to the mission of simply transmitting the collected information to the ground station, and there is a limit to efficiently performing the mission due to the limited fall time and bandwidth limitation of wireless communication. The Jetson Nano based CanSat proposed in this paper uses a pre-trained neural network model to detect the location of a vehicle in each image taken from the air in real time, and then uses a 2-axis motor to move the camera to track the vehicle.

  • PDF

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

Development of MAP Network Performance Manger Using Artificial Intelligence Techniques (인공지능에 의한 MAP 네트워크의 성능관리기 개발)

  • Son, Joon-Woo;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.46-55
    • /
    • 1997
  • This paper presents the development of intelligent performance management of computer communication networks for larger-scale integrated systems and the demonstration of its efficacy using computer simula- tion. The innermost core of the performance management is based on fuzzy set theory. This fuzzy perfor- mance manager has learning ability by using principles of neuro-fuzzy model, neuralnetwork, genetic algo- rithm(GA). Two types of performance managers are described in this paper. One is the Neuro-Fuzzy Per- formance Manager(NFPM) of which learning ability is based on the conventional gradient method, and the other is GA-based Neuro-Fuzzy Performance Manager(GNFPM)with its learning ability based on a genetic algorithm. These performance managers have been evaluated via discrete event simulation of a computer network.

  • PDF

FlappyBird Competition System: A Competition-Based Assessment System for AI Course (FlappyBird Competition System: 인공지능 수업의 경쟁 기반 평가 시스템의 구현)

  • Sohn, Eisung;Kim, Jaekyung
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.593-600
    • /
    • 2021
  • In this paper, we present the FlappyBird Competition System (FCS) implementation, a competition-based automated assessment system used in an entry-level artificial intelligence (AI) course at a university. The proposed system provides an evaluation method suitable for AI courses while taking advantage of automated assessment methods. Students are to design a neural network structure, train the weights, and tune hyperparameters using the given reinforcement learning code to improve the overall performance of game AI. Students participate using the resulting trained model during the competition, and the system automatically calculates the final score based on the ranking. The user evaluation conducted after the semester ends shows that our competition-based automated assessment system promotes active participation and inspires students to be interested and motivated to learn AI. Using FCS, the instructor significantly reduces the amount of time required for assessment.

Pre-service Teachers' Education Needs for AI-Based Education Competency

  • Mingyeong JANG;Hyeon Woo LEE
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.143-168
    • /
    • 2023
  • This study aims to analyze the perceptions and educational needs of pre-service teachers for the use of Artificial Intelligence (AI) in education. To this end, we collected survey data from 25 undergraduate students who were enrolled in a teacher education college in Seoul. The purpose of the survey was to measure the importance and current performance for instructional AI use based on the technological, pedagogical, and content knowledge (TPACK) framework, and to explore the priority of educational needs using Borich's needs analysis and the Locus for Focus model. The results of the study confirmed that Ethics and TPK competencies are prioritized. Additionally, the results indicated a high demand for practical knowledge that can be implemented in the practice of education. Based on the results, it is necessary to develop a teacher education program that focuses on ethical aspects and teaching strategy competencies in AI-based education.

Implementation of Fund Recommendation System Using Machine Learning

  • Park, Chae-eun;Lee, Dong-seok;Nam, Sung-hyun;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • In this paper, we implement a system for a fund recommendation based on the investment propensity and for a future fund price prediction. The investment propensity is classified by scoring user responses to series of questions. The proposed system recommends the funds with a suitable risk rating to the investment propensity of the user. The future fund prices are predicted by Prophet model which is one of the machine learning methods for time series data prediction. Prophet model predicts future fund prices by learning the parameters related to trend changes. The prediction by Prophet model is simple and fast because the temporal dependency for predicting the time-series data can be removed. We implement web pages for the fund recommendation and for the future fund price prediction.

Innovative Solutions for Design and Fabrication of Deep Learning Based Soft Sensor

  • Khdhir, Radhia;Belghith, Aymen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • Soft sensors are used to anticipate complicated model parameters using data from classifiers that are comparatively easy to gather. The goal of this study is to use artificial intelligence techniques to design and build soft sensors. The combination of a Long Short-Term Memory (LSTM) network and Grey Wolf Optimization (GWO) is used to create a unique soft sensor. LSTM is developed to tackle linear model with strong nonlinearity and unpredictability of manufacturing applications in the learning approach. GWO is used to accomplish input optimization technique for LSTM in order to reduce the model's inappropriate complication. The newly designed soft sensor originally brought LSTM's superior dynamic modeling with GWO's exact variable selection. The performance of our proposal is demonstrated using simulations on real-world datasets.

Prediction Model of Inclination to Visit Jeju Tourist Attractions based on CNN Deep Learning

  • YoungSang Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • Sentiment analysis can be applied to all texts generated from websites, blogs, messengers, etc. The study fulfills an artificial intelligence sentiment analysis estimating visiting evaluation opinions (reviews) and visitor ratings, and suggests a deep learning model which foretells either an affirmative or a negative inclination for new reviews. This study operates review big data about Jeju tourist attractions which are extracted from Google from October 1st, 2021 to November 30th, 2021. The normalization data used in the propensity prediction modeling of this study were divided into training data and test data at a 7.5:2.5 ratio, and the CNN classification neural network was used for learning. The predictive model of the research indicates an accuracy of approximately 84.72%, which shows that it can upgrade performance in the future as evaluating its error rate and learning precision.

Transforming Text into Video: A Proposed Methodology for Video Production Using the VQGAN-CLIP Image Generative AI Model

  • SukChang Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.225-230
    • /
    • 2023
  • With the development of AI technology, there is a growing discussion about Text-to-Image Generative AI. We presented a Generative AI video production method and delineated a methodology for the production of personalized AI-generated videos with the objective of broadening the landscape of the video domain. And we meticulously examined the procedural steps involved in AI-driven video production and directly implemented a video creation approach utilizing the VQGAN-CLIP model. The outcomes produced by the VQGAN-CLIP model exhibited a relatively moderate resolution and frame rate, and predominantly manifested as abstract images. Such characteristics indicated potential applicability in OTT-based video content or the realm of visual arts. It is anticipated that AI-driven video production techniques will see heightened utilization in forthcoming endeavors.