• Title/Summary/Keyword: artificial intelligence-based model

Search Result 1,215, Processing Time 0.025 seconds

An artificial intelligence-based design model for circular CFST stub columns under axial load

  • Ipek, Suleyman;Erdogan, Aysegul;Guneyisi, Esra Mete
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.119-139
    • /
    • 2022
  • This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

A Study on Artificial Intelligence-based Automated Integrated Security Control System Model (인공지능 기반의 자동화된 통합보안관제시스템 모델 연구)

  • Wonsik Nam;Han-Jin Cho
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.45-52
    • /
    • 2024
  • In today's growing threat environment, rapid and effective detection and response to security events is essential. To solve these problems, many companies and organizations respond to security threats by introducing security control systems. However, existing security control systems are experiencing difficulties due to the complexity and diverse characteristics of security events. In this study, we propose an automated integrated security control system model based on artificial intelligence. It is based on deep learning, an artificial intelligence technology, and provides effective detection and processing functions for various security events. To this end, the model applies various artificial intelligence algorithms and machine learning methods to overcome the limitations of existing security control systems. The proposed model reduces the operator's workload, ensures efficient operation, and supports rapid response to security threats.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Development of Big Data-based Cardiovascular Disease Prediction Analysis Algorithm

  • Kyung-A KIM;Dong-Hun HAN;Myung-Ae CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2023
  • Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).

Explanable Artificial Intelligence Study based on Blockchain Using Point Cloud (포인트 클라우드를 이용한 블록체인 기반 설명 가능한 인공지능 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.36-41
    • /
    • 2021
  • Although the technology for prediction or analysis using artificial intelligence is constantly developing, a black-box problem does not interpret the decision-making process. Therefore, the decision process of the AI model can not be interpreted from the user's point of view, which leads to unreliable results. We investigated the problems of artificial intelligence and explainable artificial intelligence using Blockchain to solve them. Data from the decision-making process of artificial intelligence models, which can be explained with Blockchain, are stored in Blockchain with time stamps, among other things. Blockchain provides anti-counterfeiting of the stored data, and due to the nature of Blockchain, it allows free access to data such as decision processes stored in blocks. The difficulty of creating explainable artificial intelligence models is a large part of the complexity of existing models. Therefore, using the point cloud to increase the efficiency of 3D data processing and the processing procedures will shorten the decision-making process to facilitate an explainable artificial intelligence model. To solve the oracle problem, which may lead to data falsification or corruption when storing data in the Blockchain, a blockchain artificial intelligence problem was solved by proposing a blockchain-based explainable artificial intelligence model that passes through an intermediary in the storage process.

Summarizing the Differences in Chinese-Vietnamese Bilingual News

  • Wu, Jinjuan;Yu, Zhengtao;Liu, Shulong;Zhang, Yafei;Gao, Shengxiang
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1365-1377
    • /
    • 2019
  • Summarizing the differences in Chinese-Vietnamese bilingual news plays an important supporting role in the comparative analysis of news views between China and Vietnam. Aiming at cross-language problems in the analysis of the differences between Chinese and Vietnamese bilingual news, we propose a new method of summarizing the differences based on an undirected graph model. The method extracts elements to represent the sentences, and builds a bridge between different languages based on Wikipedia's multilingual concept description page. Firstly, we calculate the similarity between Chinese and Vietnamese news sentences, and filter the bilingual sentences accordingly. Then we use the filtered sentences as nodes and the similarity grade as the weight of the edge to construct an undirected graph model. Finally, combining the random walk algorithm, the weight of the node is calculated according to the weight of the edge, and sentences with highest weight can be extracted as the difference summary. The experiment results show that our proposed approach achieved the highest score of 0.1837 on the annotated test set, which outperforms the state-of-the-art summarization models.

A Model Design for Enhancing the Efficiency of Smart Factory for Small and Medium-Sized Businesses Based on Artificial Intelligence (인공지능 기반의 중소기업 스마트팩토리 효율성 강화 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.16-21
    • /
    • 2019
  • Small and medium-sized Korean companies are currently changing their industrial structure faster than in the past due to various environmental factors (such as securing competitiveness and developing excellent products). In particular, the importance of collecting and utilizing data produced in smart factory environments is increasing as diverse devices related to artificial intelligence are put into manufacturing sites. This paper proposes an artificial intelligence-based smart factory model to improve the process of products produced at the manufacturing site with the recent smart factory. The proposed model aims to ensure the increasingly competitive manufacturing environment and minimize production costs. The proposed model is managed by considering not only information on products produced at the site of smart factory based on artificial intelligence, but also labour force consumed in the production of products, working hours and operating plant machinery. In addition, data produced in the proposed model can be linked with similar companies and share information, enabling strategic cooperation between enterprises in manufacturing site operations.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.