• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.023 seconds

Evaluation of Artificial Intelligence-Based Denoising Methods for Global Illumination

  • Faradounbeh, Soroor Malekmohammadi;Kim, SeongKi
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.737-753
    • /
    • 2021
  • As the demand for high-quality rendering for mixed reality, videogame, and simulation has increased, global illumination has been actively researched. Monte Carlo path tracing can realize global illumination and produce photorealistic scenes that include critical effects such as color bleeding, caustics, multiple light, and shadows. If the sampling rate is insufficient, however, the rendered results have a large amount of noise. The most successful approach to eliminating or reducing Monte Carlo noise uses a feature-based filter. It exploits the scene characteristics such as a position within a world coordinate and a shading normal. In general, the techniques are based on the denoised pixel or sample and are computationally expensive. However, the main challenge for all of them is to find the appropriate weights for every feature while preserving the details of the scene. In this paper, we compare the recent algorithms for removing Monte Carlo noise in terms of their performance and quality. We also describe their advantages and disadvantages. As far as we know, this study is the first in the world to compare the artificial intelligence-based denoising methods for Monte Carlo rendering.

An Analysis of Quality Attributes and Service Satisfaction for Artificial Intelligence-based Guide Robot (인공지능 안내 로봇 서비스 만족도와 품질 속성 분석)

  • Miyoung Cho;Jaehong Kim;Daeha Lee;Minsu Jang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.216-224
    • /
    • 2023
  • Guide robots that provide services in public places have recently emerged as a non-face-to-face solution with the spread of COVID-19 and are growing. However, most guide robots provide only the same level of intelligence and the same interaction in different and changing environments. Therefore, its usefulness is limited and customers' interest is quickly lost. To solve this problem, it is necessary to develop social intelligence that can improve the robot's environment and situational awareness performance, and to continuously maintain customer interest by providing personalized and situational services. In this study, we developed guide robot services based on social HRI components that provides multi-modal context-aware. We evaluated service usefulness by measuring user satisfaction and frequency of use of the service through the survey. We analyzed the service quality attributes to identify the differentiating factors of guide robot based on social HRI components.

Enhanced Hybrid XOR-based Artificial Bee Colony Using PSO Algorithm for Energy Efficient Binary Optimization

  • Baguda, Yakubu S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.312-320
    • /
    • 2021
  • Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

Time Series Crime Prediction Using a Federated Machine Learning Model

  • Salam, Mustafa Abdul;Taha, Sanaa;Ramadan, Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2022
  • Crime is a common social problem that affects the quality of life. As the number of crimes increases, it is necessary to build a model to predict the number of crimes that may occur in a given period, identify the characteristics of a person who may commit a particular crime, and identify places where a particular crime may occur. Data privacy is the main challenge that organizations face when building this type of predictive models. Federated learning (FL) is a promising approach that overcomes data security and privacy challenges, as it enables organizations to build a machine learning model based on distributed datasets without sharing raw data or violating data privacy. In this paper, a federated long short- term memory (LSTM) model is proposed and compared with a traditional LSTM model. Proposed model is developed using TensorFlow Federated (TFF) and the Keras API to predict the number of crimes. The proposed model is applied on the Boston crime dataset. The proposed model's parameters are fine tuned to obtain minimum loss and maximum accuracy. The proposed federated LSTM model is compared with the traditional LSTM model and found that the federated LSTM model achieved lower loss, better accuracy, and higher training time than the traditional LSTM model.

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture (농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사)

  • Seonho Khang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

The Structural Impact of Technology Readiness on Call Center Counselors' Intention to Use in the Introduction of Artificial Intelligence Systems: Focusing on AICC(Artificial Intelligence Contact Center) (인공지능 시스템 도입에 있어서 기술 준비도가 콜센터 상담사들의 사용 의도에 미치는 구조적인 영향: AICC(인공지능 컨택 센터)를 중심으로)

  • Seong Sik Baeck;Jun Seop Lee
    • Journal of Information Technology Services
    • /
    • v.22 no.4
    • /
    • pp.1-19
    • /
    • 2023
  • This study is a study on the effect of technical readiness factors on counselors' intention to use when applying AICC. AICC counselors experience improved customer service and emotional stability by receiving various monitor notification window services based on artificial intelligence algorithms such as customer counseling history, prohibited word control system, and customized counseling system. Accordingly, this study tried to verify using factors derived from technology readiness theory and technology acceptance theory among the factors affecting the intention to continue using AICC provided to counselors. To verify the research hypothesis, the causal relationship between variables such as Optimism, Innovativeness, Discomfort, Insecurity, and Technology Acceptance Theory, such as Team Support, Ease of Usage, and Innovation Resistance, was verified. As a result of empirical analysis, first, it was verified that Optimism has a positive (+) effect on Team Support and Ease of Usage, and Discomfort and Insecurity have a negative (-) effect on Ease of Usage and Team Support. Second, it was confirmed that Team Support and Ease of Usage had a positive effect on the Intention to use AICC. Based on the above empirical analysis results, the concepts of Technical Readiness were clearly proved, and in practical terms, AICC helped inquiry, quality evaluation, recording, and management of counseling history, ultimately increased corporate work efficiency.

Generative Artificial Intelligence for Structural Design of Tall Buildings

  • Wenjie Liao;Xinzheng Lu;Yifan Fei
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.203-208
    • /
    • 2023
  • The implementation of artificial intelligence (AI) design for tall building structures is an essential solution for addressing critical challenges in the current structural design industry. Generative AI technology is a crucial technical aid because it can acquire knowledge of design principles from multiple sources, such as architectural and structural design data, empirical knowledge, and mechanical principles. This paper presents a set of AI design techniques for building structures based on two types of generative AI: generative adversarial networks and graph neural networks. Specifically, these techniques effectively master the design of vertical and horizontal component layouts as well as the cross-sectional size of components in reinforced concrete shear walls and frame structures of tall buildings. Consequently, these approaches enable the development of high-quality and high-efficiency AI designs for building structures.

Artificial Intelligence and Stochastic Optimization Framework for Trip Purpose Based Route Planning

  • Wen YI;Huiwen WANG;Shuaian WANG;Xiaobo QU
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.242-246
    • /
    • 2024
  • Automated route planning is an important tool in the field of built environment. For example, a high-quality route planning method can improve the logistics planning of projects, thereby enhancing the performance of projects and the effectiveness of management. However, the traditional automated route planning is performed based on the predicted mean value travel time of candidate routes. Such a point estimate neglects the purpose of the trip and can further lead to a suboptimal decision. Motivated by this challenge, this study proposes an innovative framework for trip purpose based route planning. The proposed artificial intelligence and stochastic optimization framework recommends the most appropriate travel route for decision makers by fully considering their trip requirements beyond just the shortest mean value travel time. In addition to its theoretical contributions, our proposed route planning method will also contribute to the current logistics planning practice. Future research may be devoted to the real-life implementation of the proposed methodology in a broader context to provide empirical insights for practitioners in various industries.

Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates

  • Ha Kyung Jung;Kiduk Kim;Ji Eun Park;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.11
    • /
    • pp.959-981
    • /
    • 2024
  • Generative artificial intelligence (AI) has been applied to images for image quality enhancement, domain transfer, and augmentation of training data for AI modeling in various medical fields. Image-generative AI can produce large amounts of unannotated imaging data, which facilitates multiple downstream deep-learning tasks. However, their evaluation methods and clinical utility have not been thoroughly reviewed. This article summarizes commonly used generative adversarial networks and diffusion models. In addition, it summarizes their utility in clinical tasks in the field of radiology, such as direct image utilization, lesion detection, segmentation, and diagnosis. This article aims to guide readers regarding radiology practice and research using image-generative AI by 1) reviewing basic theories of image-generative AI, 2) discussing the methods used to evaluate the generated images, 3) outlining the clinical and research utility of generated images, and 4) discussing the issue of hallucinations.