• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.03 seconds

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

Predicting patient experience of Invisalign treatment: An analysis using artificial neural network

  • Xu, Lin;Mei, Li;Lu, Ruiqi;Li, Yuan;Li, Hanshi;Li, Yu
    • The korean journal of orthodontics
    • /
    • v.52 no.4
    • /
    • pp.268-277
    • /
    • 2022
  • Objective: Poor experience with Invisalign treatment affects patient compliance and, thus, treatment outcome. Knowing the potential discomfort level in advance can help orthodontists better prepare the patient to overcome the difficult stage. This study aimed to construct artificial neural networks (ANNs) to predict patient experience in the early stages of Invisalign treatment. Methods: In total, 196 patients were enrolled. Data collection included questionnaires on pain, anxiety, and quality of life (QoL). A four-layer fully connected multilayer perception with three backpropagations was constructed to predict patient experience of the treatment. The input data comprised 17 clinical features. The partial derivative method was used to calculate the relative contributions of each input in the ANNs. Results: The predictive success rates for pain, anxiety, and QoL were 87.7%, 93.4%, and 92.4%, respectively. ANNs for predicting pain, anxiety, and QoL yielded areas under the curve of 0.963, 0.992, and 0.982, respectively. The number of teeth with lingual attachments was the most important factor affecting the outcome of negative experience, followed by the number of lingual buttons and upper incisors with attachments. Conclusions: The constructed ANNs in this preliminary study show good accuracy in predicting patient experience (i.e., pain, anxiety, and QoL) of Invisalign treatment. Artificial intelligence system developed for predicting patient comfort has potential for clinical application to enhance patient compliance.

INTRODUCTION OF THE G-7 PROJECT: Integrated System of Water Quality Management (G-7 과제에 대한 소개 : 수질관리를 위한 통합 시스템)

  • Kim, Kye-Hyun;Kim, Eui-Hong;Lee, Hong-Keun;Lee, In-Seon;Ryu, Joong-Hi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.143-152
    • /
    • 1993
  • A long-term water quality study has been initiated by the Korean Ministry of Environment(MOE) - The G-7 Project--in cooperation with two national research institutes, an University research tn and a consulting firm. This study includes the development of computer software for total water quality management system, so called ISWQM (Integrated System of Water Quality Management). ISWQM includes four major components: a GIS database; two artificial intelligence (AI) based expert systems to estimate pollutant loadings and to provide cost-effective wastewater treatment system for small and medium size urban areas; and computer programs to integrate the database and expert systems. ISWQM is to provide user-friendly Decision Support System (DSS) for water quality planners. A GIS was used to create spatial database which stores all the necessary data to n DSS. GIS was also used to integrate the four components of ISWQM from data creation to decision making through Graphic User Interface (GUI). The results from the first phase of this study showed that GIS would provide an effective tool to build DSS using expert system.

  • PDF

Methodology for Deriving Required Quality of Product Using Analysis of Customer Reviews (사용자 리뷰 분석을 통한 제품 요구품질 도출 방법론)

  • Yerin Yu;Jeongeun Byun;Kuk Jin Bae;Sumin Seo;Younha Kim;Namgyu Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.1-18
    • /
    • 2023
  • Recently, as technology development has accelerated and product life cycles have been shortened, it is necessary to derive key product features from customers in the R&D planning and evaluation stage. More companies want differentiated competitiveness by providing consumer-tailored products based on big data and artificial intelligence technology. To achieve this, the need to correctly grasp the required quality, which is a requirement of consumers, is increasing. However, the existing methods are centered on suppliers or domain experts, so there is a gap from the actual perspective of consumers. In other words, product attributes were defined by suppliers or field experts, but this may not consider consumers' actual perspective. Accordingly, the demand for deriving the product's main attributes through reviews containing consumers' perspectives has recently increased. Therefore, we propose a review data analysis-based required quality methodology containing customer requirements. Specifically, a pre-training language model with a good understanding of Korean reviews was established, consumer intent was correctly identified, and key contents were extracted from the review through a combination of KeyBERT and topic modeling to derive the required quality for each product. RevBERT, a Korean review domain-specific pre-training language model, was established through further pre-training. By comparing the existing pre-training language model KcBERT, we confirmed that RevBERT had a deeper understanding of customer reviews. In addition, all processes other than that of selecting the required quality were linked to the automation process, resulting in the automation of deriving the required quality based on data.

Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning (딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가)

  • Kim, Kyung-Nam;Kim, Seon-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.385-391
    • /
    • 2022
  • Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF

Hotel employee's perceptions of artificial intelligence concierge robots effect on switching cost, resistance, turnover intention (호텔 종업원의 인공지능 컨시어지로봇에 대한 인식이 전환비용, 저항 및 이직의도에 미치는 영향)

  • Wang, Danping;Chung, Namho
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.206-223
    • /
    • 2023
  • The introduction of Smart technologies such as Artificial Intelligence(AI) systems are have a powerful impact in a variety of industry fields. Some experts predict that smart technology will completely change people's daily life and work styles, causing technological innovation, productivity improvement, and discovery and emergence of new fields. On the one hand, this vision cannot ignore negative views and concerns. Despite many social debates about employment, such as job loss and rising unemployment, there have not been many studies based on employee experience that provide a fundamental solution to the conflict between AI and employment. Therefore, this study finds out the effects and related factors of AI concierge robots for hotel employees, focusing on the hotel industry, and how employees' perceptions of AI concierge robots affect user resistance and turnover intention. This study, conducted a questionnaire survey of 322 hotel employees who had experience working with AI concierge robots in China, and used SPSS and SmartPLS statistical analysis programs to draw conclusions. We found that hotel employees' perceptions of AI concierge robots were significantly related to user resistance and turnover intention, and this association was related to employee self-efficacy, perceived organizational support, quality of AI services and new tasks. In addition, it was found that the quality of AI concierge robots directly or indirectly had the greatest influence on user resistance and turnover intention. The findings of this study provide theoretical implications for academia and practical implications for industry practitioners.

Text-to-speech with linear spectrogram prediction for quality and speed improvement (음질 및 속도 향상을 위한 선형 스펙트로그램 활용 Text-to-speech)

  • Yoon, Hyebin
    • Phonetics and Speech Sciences
    • /
    • v.13 no.3
    • /
    • pp.71-78
    • /
    • 2021
  • Most neural-network-based speech synthesis models utilize neural vocoders to convert mel-scaled spectrograms into high-quality, human-like voices. However, neural vocoders combined with mel-scaled spectrogram prediction models demand considerable computer memory and time during the training phase and are subject to slow inference speeds in an environment where GPU is not used. This problem does not arise in linear spectrogram prediction models, as they do not use neural vocoders, but these models suffer from low voice quality. As a solution, this paper proposes a Tacotron 2 and Transformer-based linear spectrogram prediction model that produces high-quality speech and does not use neural vocoders. Experiments suggest that this model can serve as the foundation of a high-quality text-to-speech model with fast inference speed.

A Case Study on Quality Improvement of Electric Vehicle Hairpin Winding Motor Using Deep Learning AI Solution (딥러닝 AI 솔루션을 활용한 전기자동차 헤어핀 권선 모터의 용접 품질향상에 관한 사례연구)

  • Lee, Seungzoon;Sim, Jinsup;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.283-296
    • /
    • 2023
  • Purpose: The purpose of this study is to actually implement and verify whether welding defects can be detected in real time by utilizing deep learning AI solutions in the welding process of electric vehicle hairpin winding motors. Methods: AI's function and technological elements using synthetic neural network were applied to existing electric vehicle hairpin winding motor laser welding process by making special hardware for detecting electric vehicle hairpin motor laser welding defect. Results: As a result of the test applied to the welding process of the electric vehicle hairpin winding motor, it was confirmed that defects in the welding part were detected in real time. The accuracy of detection of welds was achieved at 0.99 based on mAP@95, and the accuracy of detection of defective parts was 1.18 based on FB-Score 1.5, which fell short of the target, so it will be supplemented by introducing additional lighting and camera settings and enhancement techniques in the future. Conclusion: This study is significant in that it improves the welding quality of hairpin winding motors of electric vehicles by applying domestic artificial intelligence solutions to laser welding operations of hairpin winding motors of electric vehicles. Defects of a manufacturing line can be corrected immediately through automatic welding inspection after laser welding of an electric vehicle hairpin winding motor, thus reducing waste throughput caused by welding failure in the final stage, reducing input costs and increasing product production.

Design of multi-sensor system for comprehensive indoor air quality monitoring

  • TaeHeon Kim;SungYeup Kim;Yoosin Kim;Min Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.149-158
    • /
    • 2024
  • This study aims to design and develop AirDeep-Room, a multi-sensor system for monitoring air quality in various indoor environments. The system measures CO2, TVOC, particulate matter, temperature, and humidity in real-time. By integrating multiple sensors, AirDeep-Room allows convenient correlation analysis using low data format in real-time. The sensor system was installed in a server room and a classroom. Data analysis showed a negative correlation of -0.24 between temperature and humidity in the server room, and a positive correlation of 0.43 in the classroom, indicating different interactions. A high correlation (r=0.69) between the number of students and concentrations of CO2 and TVOC demonstrated the significant impact of occupancy on air quality. AirDeep-Room effectively manages air quality across various environments and provides essential data for improving air quality in densely populated areas.