• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.029 seconds

A New Decision Tree Algorithm Based on Rough Set and Entity Relationship (러프셋 이론과 개체 관계 비교를 통한 의사결정나무 구성)

  • Han, Sang-Wook;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • We present a new decision tree classification algorithm using rough set theory that can induce classification rules, the construction of which is based on core attributes and relationship between objects. Although decision trees have been widely used in machine learning and artificial intelligence, little research has focused on improving classification quality. We propose a new decision tree construction algorithm that can be simplified and provides an improved classification quality. We also compare the new algorithm with the ID3 algorithm in terms of the number of rules.

A Bilateral Filtering Based Ringing Elimination Approach for Motion-blurred Restoration Image

  • Wang, Weiqing;Wang, Weihua;Yin, Jiao
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.200-209
    • /
    • 2020
  • We describe an approach that uses a bilateral filter to reduce the ringing artifact in motion-blurred restoration image. It takes into account the specific physical structure of the ringing artifact combined with the properties of the human visual system. To properly reduce the ringing artifact, each of the adjacent pixels is limited in a straight line which has a given direction. To protect the edges and the texture regions of an image, our algorithm divides the image into texture regions and flat regions, and the artifact reduction algorithm is only applied to the flat region. Finally, we use 8 typical images and 5 objective quality evaluation indices to evaluate our algorithm. Experimental results show that our algorithm can obtain better results in subjective visual effect and in objective image quality evaluation.

How Trust in Human-like AI-based Service on Social Media Will Influence Customer Engagement: Exploratory Research to Develop the Scale of Trust in Human-like AI-based Service

  • Jin Jingchuan;Shali Wu
    • Asia Marketing Journal
    • /
    • v.26 no.2
    • /
    • pp.129-144
    • /
    • 2024
  • This research is on how people's trust in human-like AI-based service will influence customer engagement (CE). This study will discuss the relationship between trust and CE and explore how people's trust in AI affects CE when they lack knowledge of the company/brand. Items from the philosophical study of trust were extracted to build a scale suitable for trust in AI. The scale's reliability was ensured, and six components of trust in AI were merged into three dimensions: trust based on Quality Assurance, Risk-taking, and Corporate Social Responsibility. Trust based on quality assurance and risk-taking is verified to positively impact customer engagement, and the feelings about AI-based service fully mediate between all three dimensions of trust in AI and CE. The new trust scale for human-like AI-based services on social media sheds light on further research. The relationship between trust in AI and CE provides a theoretical basis for subsequent research.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

A Study on the Quality Monitoring and Prediction of OTT Traffic in ISP (ISP의 OTT 트래픽 품질모니터링과 예측에 관한 연구)

  • Nam, Chang-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2021
  • This paper used big data and artificial intelligence technology to predict the rapidly increasing internet traffic. There have been various studies on traffic prediction in the past, but they have not been able to reflect the increasing factors that induce huge Internet traffic such as smartphones and streaming in recent years. In addition, event-like factors such as the release of large-capacity popular games or the provision of new contents by OTT (Over the Top) operators are more difficult to predict in advance. Due to these characteristics, it was impossible for an ISP (Internet Service Provider) to reflect real-time service quality management or traffic forecasts in the network business environment with the existing method. Therefore, in this study, in order to solve this problem, an Internet traffic collection system was constructed that searches, discriminates and collects traffic data in real time, separate from the existing NMS. Through this, the flexibility and elasticity to automatically register the data of the collection target are secured, and real-time network quality monitoring is possible. In addition, a large amount of traffic data collected from the system was analyzed by machine learning (AI) to predict future traffic of OTT operators. Through this, more scientific and systematic prediction was possible, and in addition, it was possible to optimize the interworking between ISP operators and to secure the quality of large-scale OTT services.

The Study on the Quality Assessment Model of Aircraft Voice Recognition Software (항공기 음성인식 소프트웨어 품질 평가 모델 연구)

  • Lee, Seung-Mok
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Voice Recognition has recently been improved with AI(Artificial Intelligence) and has greatly improved the false recognition rate and provides an effective and efficient Human Machine Interface (HMI). This trend has also been applied in the defense industry, particularly in the aviation, F-35. However, for the quality evaluation of Voice Recognition, the defense industry, especially the aircraft, requires measurable quantitative models. In this paper, the quantitative evaluation model is proposed for applying Voice Recognition to aircraft. For the proposal, the evaluation items are identified from the Voice Recognition technology and ISO/IEC 25000(SQuaRE) quality attributes. Using these two perspectives, the quantitative evaluation model is proposed under aircraft operation condition and confirms the evaluation results.

KoQuality: Curation of High-quality Instruction Data for Korean Language Models (KoQuality: 한국어 언어 모델을 위한 고품질 명령어 데이터 큐레이션)

  • Yohan Na;Dahye Kim;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.306-311
    • /
    • 2023
  • 최근 생성형 언어모델에 명령어 튜닝을 적용하여 사람의 명령을잘이해하고, 대답의 성능을 향상시키는 연구가 활발히 수행되고 있으며, 이 과정에서 다양한 명령어 튜닝 데이터셋이 등장하고 있다. 하지만 많은 데이터셋들 중에서 어떤 것을 선택해서 활용하지가 불분명하기 때문에, 현존하는 연구들에서는 단순히 데이터셋을 모두 활용하는 방식으로 명령어 튜닝이 진행되고 있다. 하지만 최근 연구들에서 고품질의 적은 데이터셋으로도 명령어 튜닝을 하기에 충분하다는 결과들이 보고되고 있는 만큼, 많은 명령어 데이터셋에서 고품질의 명령어를 선별할 필요성이 커지고 있다. 이에 따라 본 논문에서는 한국어 데이터셋에서도 명령어 튜닝 데이터셋의 품질을 향상시키기 위해, 기존의 데이터셋들에서 데이터를 큐레이션하여 확보된 적은 양의 고품질의 명령어 데이터셋인 KoQuality를 제안한다. 또한 KoQuality를 활용하여 한국어 언어모델에 명령어 튜닝을 진행하였으며, 이를 통해 자연어 이해 성능을 높일 수 있음을 보인다. 특히 제로샷 상황에서 KoBEST 벤치마크에서 기존의 모델들보다 높은 성능 향상을 보였다.

  • PDF

MULTI-APERTURE IMAGE PROCESSING USING DEEP LEARNING

  • GEONHO HWANG;CHANG HOON SONG;TAE KYUNG LEE;HOJUN NA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.56-74
    • /
    • 2023
  • In order to obtain practical and high-quality satellite images containing high-frequency components, a large aperture optical system is required, which has a limitation in that it greatly increases the payload weight. As an attempt to overcome the problem, many multi-aperture optical systems have been proposed, but in many cases, these optical systems do not include high-frequency components in all directions, and making such an high-quality image is an ill-posed problem. In this paper, we use deep learning to overcome the limitation. A deep learning model receives low-quality images as input, estimates the Point Spread Function, PSF, and combines them to output a single high-quality image. We model images obtained from three rectangular apertures arranged in a regular polygon shape. We also propose the Modulation Transfer Function Loss, MTF Loss, which can capture the high-frequency components of the images. We present qualitative and quantitative results obtained through experiments.

What factors drive AI project success? (무엇이 AI 프로젝트를 성공적으로 이끄는가?)

  • KyeSook Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.327-351
    • /
    • 2023
  • This paper aims to derive success factors that successfully lead an artificial intelligence (AI) project and prioritize importance. To this end, we first reviewed prior related studies to select success factors and finally derived 17 factors through expert interviews. Then, we developed a hierarchical model based on the TOE framework. With a hierarchical model, a survey was conducted on experts from AI-using companies and experts from supplier companies that support AI advice and technologies, platforms, and applications and analyzed using AHP methods. As a result of the analysis, organizational and technical factors are more important than environmental factors, but organizational factors are a little more critical. Among the organizational factors, strategic/clear business needs, AI implementation/utilization capabilities, and collaboration/communication between departments were the most important. Among the technical factors, sufficient amount and quality of data for AI learning were derived as the most important factors, followed by IT infrastructure/compatibility. Regarding environmental factors, customer preparation and support for the direct use of AI were essential. Looking at the importance of each 17 individual factors, data availability and quality (0.2245) were the most important, followed by strategy/clear business needs (0.1076) and customer readiness/support (0.0763). These results can guide successful implementation and development for companies considering or implementing AI adoption, service providers supporting AI adoption, and government policymakers seeking to foster the AI industry. In addition, they are expected to contribute to researchers who aim to study AI success models.

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.