• 제목/요약/키워드: artificial intelligence quality

검색결과 483건 처리시간 0.027초

A Study on Big Data Information System based on Artificial Intelligence -Filmmaker and Focusing on Movie case analysis of 10 million Viewers- (인공지능 기반형 빅데이터 정보시스템에 관한 연구 -영화제작자와 천만 영화 사례분석 중심으로-)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제14권2호
    • /
    • pp.377-388
    • /
    • 2019
  • The system proposed in this paper was suggested as a big data system that works in the age of artificial intelligence of the 4th Industrial Revolution. The proposed system can be a good example in terms of government 's development of new intelligent big data information system. For example, the proposed system may be introduced into the system of a department as a function of the integration of existing cinema ticket integration network or its networking. For this purpose, the proposed system transmits the user's profile to the film producer or other company, where it is provided as comparison data. Soon, the information is sent to the user-specific characteristic data and then the film-maker will be able to gauge the success of the three elements of the movie's performance, cinematic quality, and break-even point in real time, which are revealed through the movie review that the actual user feels, including the so-called 'new reinterpretation.

A Study on the Complementary Method of Aerial Image Learning Dataset Using Cycle Generative Adversarial Network (CycleGAN을 활용한 항공영상 학습 데이터 셋 보완 기법에 관한 연구)

  • Choi, Hyeoung Wook;Lee, Seung Hyeon;Kim, Hyeong Hun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제38권6호
    • /
    • pp.499-509
    • /
    • 2020
  • This study explores how to build object classification learning data based on artificial intelligence. The data has been investigated recently in image classification fields and, in turn, has a great potential to use. In order to recognize and extract relatively accurate objects using artificial intelligence, a large amount of learning data is required to be used in artificial intelligence algorithms. However, currently, there are not enough datasets for object recognition learning to share and utilize. In addition, generating data requires long hours of work, high expenses and labor. Therefore, in the present study, a small amount of initial aerial image learning data was used in the GAN (Generative Adversarial Network)-based generator network in order to establish image learning data. Moreover, the experiment also evaluated its quality in order to utilize additional learning datasets. The method of oversampling learning data using GAN can complement the amount of learning data, which have a crucial influence on deep learning data. As a result, this method is expected to be effective particularly with insufficient initial datasets.

Challenges of diet planning for children using artificial intelligence

  • Changhun, Lee;Soohyeok, Kim;Jayun, Kim;Chiehyeon, Lim;Minyoung, Jung
    • Nutrition Research and Practice
    • /
    • 제16권6호
    • /
    • pp.801-812
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the required knowledge of nutrition and development as well as the high design complexity associated with large numbers of food items. Artificial intelligence (AI) is expected to provide diet-planning solutions via automatic and effective application of professional knowledge, addressing the complexity of optimal diet design. This study presents the results of the evaluation of the utility of AI-generated diets for children and provides related implications. MATERIALS/METHODS: We developed 2 AI solutions for children aged 3-5 yrs using a generative adversarial network (GAN) model and a reinforcement learning (RL) framework. After training these solutions to produce daily diet plans, experts evaluated the human- and AI-generated diets in 2 steps. RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with nutrient information and no food names, the proportion of strong positive responses to RL-generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In contrast, in terms of diet composition, the experts' responses to human-designed diets were more positive when experts were provided with food name information (i.e., composition information). CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the development and evaluation of AI to support dietary planning for children. This study demonstrates the possibility of developing AI-assisted diet planning methods for children and highlights the importance of composition compliance in diet planning. Further integrative cooperation in the fields of nutrition, engineering, and medicine is needed to improve the suitability of our proposed AI solutions and benefit children's well-being by providing high-quality diet planning in terms of both compositional and nutritional criteria.

A Study on the Defect Detection of Fabrics using Deep Learning (딥러닝을 이용한 직물의 결함 검출에 관한 연구)

  • Eun Su Nam;Yoon Sung Choi;Choong Kwon Lee
    • Smart Media Journal
    • /
    • 제11권11호
    • /
    • pp.92-98
    • /
    • 2022
  • Identifying defects in textiles is a key procedure for quality control. This study attempted to create a model that detects defects by analyzing the images of the fabrics. The models used in the study were deep learning-based VGGNet and ResNet, and the defect detection performance of the two models was compared and evaluated. The accuracy of the VGGNet and the ResNet model was 0.859 and 0.893, respectively, which showed the higher accuracy of the ResNet. In addition, the region of attention of the model was derived by using the Grad-CAM algorithm, an eXplainable Artificial Intelligence (XAI) technique, to find out the location of the region that the deep learning model recognized as a defect in the fabric image. As a result, it was confirmed that the region recognized by the deep learning model as a defect in the fabric was actually defective even with the naked eyes. The results of this study are expected to reduce the time and cost incurred in the fabric production process by utilizing deep learning-based artificial intelligence in the defect detection of the textile industry.

A Study on the Data Pseudonymization Methodology for Defense Training Data as Artificial Intelligence Technology is applied to the Defense Field (국방 분야 인공지능 기술 접목에 따른 교육훈련 데이터 가명처리 방법론에 관한 연구)

  • Hyunsuk Cho;Sujin Kang;Dongrae Cho;Yeongseop Shin
    • Journal of The Korean Institute of Defense Technology
    • /
    • 제5권3호
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, in the defense field, efforts are being made to collect data by building data centers to incorporate artificial intelligence technology. Weapon system training data can be used as input data for artificial intelligence models and can be used as high-quality data to maximize training performance and develop military strategies. However, training data contains personal information such as the names and military numbers of the personnel who operated the equipment, and training records that reveal the characteristics of the weapon system. If such data is passed on to the enemy, not only the specifications and performance of the weapon system but also the proficiency of each operator may be exposed. In this paper, we propose a pseudonym processing methodology for education and training data security and also suggest a direction for revising related laws.

  • PDF

Development of vision system for quality inspection of automotive parts and comparison of machine learning models (자동차 부품 품질검사를 위한 비전시스템 개발과 머신러닝 모델 비교)

  • Park, Youngmin;Jung, Dong-Il
    • The Journal of the Convergence on Culture Technology
    • /
    • 제8권1호
    • /
    • pp.409-415
    • /
    • 2022
  • In computer vision, an image of a measurement target is acquired using a camera. And feature values, vectors, and regions are detected by applying algorithms and library functions. The detected data is calculated and analyzed in various forms depending on the purpose of use. Computer vision is being used in various places, especially in the field of automatically recognizing automobile parts or measuring the quality. Computer vision is being used as the term machine vision in the industrial field, and it is connected with artificial intelligence to judge product quality or predict results. In this study, a vision system for judging the quality of automobile parts was built, and the results were compared by applying five machine learning classification models to the produced data.

An Empirical Study on the Prediction of Future New Defense Technologies in Artificial Intelligence (인공지능 분야 국방 미래 신기술 예측에 관한 실증연구)

  • Ahn, Jin-Woo;Noh, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권9호
    • /
    • pp.458-465
    • /
    • 2020
  • Technological advances in artificial intelligence are affecting many industries, such as telecommunications, logistics, security, and healthcare, and research and development related to economic, efficiency, linkage with commercial technologies are the current focus. Predicting the changes in the future battlefield environment and ways of conducting war from a strategic point of view, as well as designing/planning the direction of military development for a leading response is not only a basic element to prepare for comprehensive future threats but also an indispensable factor that can produce an optimal effect over a limited budget/time. From this perspective, this study was conducted as part of a technology-driven plan to discover potential future technologies with high potential for use in the defense field and apply them to R&D. In this study, based on research data collected in a defense future technology investigation, the future new technology that requires further research was predicted by considering the redundancy with existing defense research projects and the feasibility of technology. In addition, an empirical study was conducted to verify the significance between the future new defense technology and the evaluation indicators in the AI field.

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • 제9권2호
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Analysis of the Influence Factors on Intention of Use for Artificial Intelligence-Based Health Functional Food Recommended Service (인공지능기반 건강기능식품 추천서비스 사용의도에 미치는 영향요인 분석)

  • Yun, Heajeang;Kim, Yeongdae;Kim, Ji-Young;Shin, Yongtae
    • Journal of Information Technology Services
    • /
    • 제20권6호
    • /
    • pp.1-16
    • /
    • 2021
  • The health functional food market continues to grow, and according to that trend, the subdivision sales of personalized health functional foods, which have been legally prohibited, will be operated as a special regulatory pilot project. Personalized health functional food recommendations have a variety of personalized indicators to consider, and it is believed that algorithmic methods will be needed to proceed in a customized manner considering all of them. This study aims to contribute to the development of the AI-based health functional food recommendation service by studying factors that affect the use of the AI-based health functional food recommendation service. This paper analyzed the intention of use for AI-based health functional food recommendation service based on the information system success model and Technology Acceptance Model. This study considered information quality factors, service quality factor, and system quality factor as independent variables influencing perceived usefulness, perceived ease of use and trust. For empirical analysis, 406 questionnaires were used and the collected data were performed using AMOS 22.0 and SPSS 22.0. Research has shown that the accuracy, timeliness, empathy and availability have a positive effect on usefulness. Understandability and availability has been shown to have a positive effect on ease of use. The accuracy, understandability, empathy and availibility has been shown to have a positive impact on Trust. Usefulness, ease of use and trust all have been shown to have a positive influence on intention of use.

Temperature Classification of Heat-treated Metals using Pattern Recognition of Ultrasonic Signal (초음파 신호의 패턴 인식에 의한 금속의 열처리 온도 분류)

  • Im, Rae-Muk;Sin, Dong-Hwan;Kim, Deok-Yeong;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제48권12호
    • /
    • pp.1544-1553
    • /
    • 1999
  • Recently, ultrasonic testing techniques have been widely used in the evaluation of the quality of metal. In this experiment, six heat-treated temperature of specimen have been considered : 0, 1200, 1250, 1300, 1350 and 1387$^{\circ}C$. As heat-treated temperature increases, the grain size of stainless steel also increases and then, eventually make it destroy. In this paper, a pattern recognition method is proposed to identify the heat-treated temperature of metals by evidence accumulation based on artificial intelligence with multiple feature parameters; difference absolute mean value(DAMV), variance(VAR), mean frequency(MEANF), auto regressive model coefficient(ARC), linear cepstrum coefficient(LCC) and adaptive cepstrum vector(ACV). The grain signal pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. Especially ACV is superior to the other parameters. The results (96% successful pattern classification) are presented to support the feasibility of the suggested approach for ultrasonic grain signal pattern recognition.

  • PDF