• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.206 seconds

A Study on the Characteristics of AI Fashion based on Emotions -Focus on the User Experience- (감성을 기반으로 하는 AI 패션 특성 연구 -사용자 중심(UX) 관점으로-)

  • Kim, Minsun;Kim, Jinyoung
    • Journal of Fashion Business
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Towards a Machine Learning Approach for Monitoring Urban Morphology - Focused on a Boston Case Study - (도시 형태 변화 모니터링을 위한 머신러닝 기법의 가능성 - 보스톤 사례연구를 중심으로 -)

  • Hwang, Jie-Eun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.125-140
    • /
    • 2017
  • This study explores potential capability of a machine learning approach for monitoring urban morphology based on an evident case study. The case study conveys year 2006 investigations on interpreting urban morphology of Boston Main Streets by applying a machine learning approach. From the lesson of the precedent study, in 2016, another field research and interview was conducted to compare changes in urban situation, data commons culture, and technology innovation during the decade. This paper describes open possibilities to advance urban monitoring for morphological changes. Most of all, a multi-participatory data platform enables managing urban data system in real time. Second, collaboration with machines with artificial intelligence can intervene the framework of the urban management system as well as transform it through new demands of innovative industries. Recently, urban regeneration became a dominant urban planning strategy in Korean, therefore, urban monitoring is on demand. It is timely important to correspond to in-situ problems based on empirical research.

A Study on Artificial Intelligence Model for Forecasting Daily Demand of Tourists Using Domestic Foreign Visitors Immigration Data (국내 외래객 출입국 데이터를 활용한 관광객 일별 수요 예측 인공지능 모델 연구)

  • Kim, Dong-Keon;Kim, Donghee;Jang, Seungwoo;Shyn, Sung Kuk;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.35-37
    • /
    • 2021
  • Analyzing and predicting foreign tourists' demand is a crucial research topic in the tourism industry because it profoundly influences establishing and planning tourism policies. Since foreign tourist data is influenced by various external factors, it has a characteristic that there are many subtle changes over time. Therefore, in recent years, research is being conducted to design a prediction model by reflecting various external factors such as economic variables to predict the demand for tourists inbound. However, the regression analysis model and the recurrent neural network model, mainly used for time series prediction, did not show good performance in time series prediction reflecting various variables. Therefore, we design a foreign tourist demand prediction model that complements these limitations using a convolutional neural network. In this paper, we propose a model that predicts foreign tourists' demand by designing a one-dimensional convolutional neural network that reflects foreign tourist data for the past ten years provided by the Korea Tourism Organization and additionally collected external factors as input variables.

  • PDF

Design of Stand-alone AI Processor for Embedded System (독립운용이 가능한 임베디드 인공지능 프로세서 설계)

  • Cho, Kwon Neung;Choi, Do Young;Jeong, Young Woo;Lee, Seung Eun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.600-602
    • /
    • 2021
  • With the development of the mobile industry and growing interest in artificial intelligence (AI) technology, a lot of research for AI processors which applicable to embedded systems is under study. When implementing AI to embedded systems, the design should be considered the restriction of resource and power consumption. Moreover, it is efficient to include a dedicated hardware accelerator in order to complement the low computational performance of the embedded system. In this paper, we propose an stand-alone embedded AI processor. The proposed AI processor includes a hardware accelerator that is dedicated to the distance-based AI algorithm and a general-purpose MCU that supports flexible programmability for application to various embedded systems. The AI processor was designed with Verilog HDL and verified by implementing on Field Programmable Gate Array (FPGA).

  • PDF

Research on Digital Twin Automation Techniques in the Construction Industry through 2D Design Drawing Data Extraction and 3D Spatial Data Construction (2D 설계도면 데이터 추출 및 3차원 공간 데이터 구축을 통한 건설산업 디지털 트윈 자동화 기법 연구)

  • Lee, Jongseo;Moon, Il-YOUNG
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.609-612
    • /
    • 2021
  • Government agencies and companies are establishing and promoting digital transformation strategies in various industrial fields, and are leading the era of the 4th industrial revolution through successful technological innovation. In this time of change, we can see many stories of global companies Nike and Starbucks as successful examples of digital transformation. These two companies are showing successful results through digital transformation. Domestic companies are also conducting digital innovation based on mobile, cloud, IoT, artificial intelligence, and AR/VR technologies, and are establishing RPA (Robotic Process Automation) processes for high efficiency and high productivity. In this paper, we introduce the 3D digital twin space construction automation process technique using data from the entire construction cycle of design, construction, and maintenance of the construction industry, and look into the digital transformation strategy of the construction industry in the future.

  • PDF

A Study on the Design of Digital Twin-Based Communication Tools for Smart Port and Autonomous Ship (스마트항만-자율운항선박 연계를 위한 디지털 트윈 기반 커뮤니케이션 도구 설계 연구)

  • Cho Yuseong;Cho Yongdeok;Koo Hanmo;Koopo Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.362-365
    • /
    • 2022
  • With the development of the 4th industrial revolution technology, smartization in various fields is accelerating. The shipping and logistics industry is also promoting smartization by combining advanced new technologies such as digital twin, Internet of Things, and artificial intelligence. In Korea, the Ministry of Maritime Affairs and Fisheries is promoting a strategy to spread the smart shipping logistics system in line with the changing global shipping logistics trend, and through this, it is creating a foundation for smart shipping logistics. This study aims to present the concept of a communication tool that recognizes the importance of communication between each logistics entity and exchanges opinions between logistics entities in a virtual digital twin environment to cope with the changing shipping logistics process. In addition, for the development of these communication tools, this study derive a software design model, including architecture.

  • PDF

Analysis of Effects of Small School Space Innovation (소규모 학교공간혁신 효과성 분석)

  • Kwon, Soon-Chul;Lee, Yong-Hwan
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • The downsizing of schools is accelerating due to a rapid decline in the school-age population, and as the crisis over regional and school disappearance increases, the need for smaller schools to respond to future educational needs is increasing. Through flexible curricula and digital/artificial intelligence-based classroom teaching improvements, students' satisfaction with school life, student creativity and character development, improved academic achievement, and strengthened cooperative communication capabilities will be observed, and teachers' teaching and learning methods will change. Educational effects such as these are important, and transforming school facilities into future-oriented spaces, including school space innovation, is required to accomplish them. This study examined the future of education systems in small schools, focusing on analyzing the educational effects and awareness of the sustainability of spatial innovation, in terms of school space changes, school education correlation, and smart environment, to develop innovation projects in small schools. A desirable direction for implementation is presented.

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.21-30
    • /
    • 2024
  • This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.

Design of multi-sensor system for comprehensive indoor air quality monitoring

  • TaeHeon Kim;SungYeup Kim;Yoosin Kim;Min Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.149-158
    • /
    • 2024
  • This study aims to design and develop AirDeep-Room, a multi-sensor system for monitoring air quality in various indoor environments. The system measures CO2, TVOC, particulate matter, temperature, and humidity in real-time. By integrating multiple sensors, AirDeep-Room allows convenient correlation analysis using low data format in real-time. The sensor system was installed in a server room and a classroom. Data analysis showed a negative correlation of -0.24 between temperature and humidity in the server room, and a positive correlation of 0.43 in the classroom, indicating different interactions. A high correlation (r=0.69) between the number of students and concentrations of CO2 and TVOC demonstrated the significant impact of occupancy on air quality. AirDeep-Room effectively manages air quality across various environments and provides essential data for improving air quality in densely populated areas.