• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.029 seconds

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

The Effect of Anthropomorphism Level of the Shopping Chatbot, Message Type, and Media Self-Efficacy on Purchase Intention (쇼핑 챗봇의 의인화 수준과 메시지 유형, 미디어 자기효능감이 구매의도에 미치는 영향)

  • Ha, Yu Jin;Hwang, Sun jin
    • Journal of Fashion Business
    • /
    • v.25 no.4
    • /
    • pp.79-91
    • /
    • 2021
  • Currently, chatbot, a conversational platform based on artificial intelligence, is drawing attention as a new marketing channel. This study attempted to verify the effect of the anthropomorphism, message type, and media self-efficacy level on purchase intention. The experimental design of this study was a 2 (anthropomorphism level of shopping chatbot: low vs. high) × 2 (message type: factual vs. evaluative) × 2 (media self-efficacy: low vs. high) three-way mixed analysis of variance (ANOVA). This study conducted a survey by the convenience sampling method of 402 women in their 20s and 30s living in Seoul and the Gyeonggi area who were aware of chatbot services. For the final analysis, 388 questionnaires were used. Data were analyzed with the SPSS 23 program and three-way ANOVA. Simple main effects analysis was conducted. The results of this study were as follows. First, there were statistically significant differences in purchase intention according to anthropomorphism level, message type, and media self-efficacy. Second, message type and media self-efficacy showed statistically significant interaction effects on purchase intention. Lastly, anthropomorphism and the media self-efficacy level and the message type of the shopping chatbots showed significant three-way interaction effects on purchase intention.

Real-time Camera and Video Streaming Through Optimized Settings of Ethernet AVB in Vehicle Network System

  • An, Byoungman;Kim, Youngseop
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3025-3047
    • /
    • 2021
  • This paper presents the latest Ethernet standardization of in-vehicle network and the future trends of automotive Ethernet technology. The proposed system provides design and optimization algorithms for automotive networking technology related to AVB (Audio Video Bridge) technology. We present a design of in-vehicle network system as well as the optimization of AVB for automotive. A proposal of Reduced Latency of Machine to Machine (RLMM) plays an outstanding role in reducing the latency among devices. RLMM's approach to real-world experimental cases indicates a reduction in latency of around 41.2%. The setup optimized for the automotive network environment is expected to significantly reduce the time in the development and design process. The results obtained in the study of image transmission latency are trustworthy because average values were collected over a long period of time. It is necessary to analyze a latency between multimedia devices within limited time which will be of considerable benefit to the industry. Furthermore, the proposed reliable camera and video streaming through optimized AVB device settings would provide a high level of support in the real-time comprehension and analysis of images with AI (Artificial Intelligence) algorithms in autonomous driving.

Study on Application of Dampers and Optimal Design for Retractable Large Spatial Structures (개폐식 대공간 구조물의 감쇠장치 적용 및 최적설계에 관한 연구)

  • Joung, Bo-Ra;Kim, Si-Uk;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-358
    • /
    • 2020
  • This paper presents a tuned mass damper (TMD) utilizing a parametric design technique to reduce the dynamic responses to seismic loads of retractable large spatial structures. An artificial intelligence algorithm was developed to automatically search for the installation position of the damping device. This enables confirming the dynamic response of the structure in real time while finding the optimum position for the damping device. Further, the optimum mass of the damping device is determined from among several alternatives, and a design that can be effectively applied to both open and closed conditions of the roof is obtained.

Fundamental Function Design of Real-Time Unmanned Monitoring System Applying YOLOv5s on NVIDIA TX2TM AI Edge Computing Platform

  • LEE, SI HYUN
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.22-29
    • /
    • 2022
  • In this paper, for the purpose of designing an real-time unmanned monitoring system, the YOLOv5s (small) object detection model was applied on the NVIDIA TX2TM AI (Artificial Intelligence) edge computing platform in order to design the fundamental function of an unmanned monitoring system that can detect objects in real time. YOLOv5s was applied to the our real-time unmanned monitoring system based on the performance evaluation of object detection algorithms (for example, R-CNN, SSD, RetinaNet, and YOLOv5). In addition, the performance of the four YOLOv5 models (small, medium, large, and xlarge) was compared and evaluated. Furthermore, based on these results, the YOLOv5s model suitable for the design purpose of this paper was ported to the NVIDIA TX2TM AI edge computing system and it was confirmed that it operates normally. The real-time unmanned monitoring system designed as a result of the research can be applied to various application fields such as an security or monitoring system. Future research is to apply NMS (Non-Maximum Suppression) modification, model reconstruction, and parallel processing programming techniques using CUDA (Compute Unified Device Architecture) for the improvement of object detection speed and performance.

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Ashish Bhatt;Darshankumar Prajapati;Akshaya Gupte
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.69-82
    • /
    • 2023
  • Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.

Design and Implementation of RISC-V Pipeline Processor Supporting RV32IMC Instruction Extensions for High-Performance Embedded Devices (고성능 임베디드 디바이스를 위한 RV32IMC명령어 확장을 지원하는 RISC-V 파이프라인 프로세서 설계 및 구현)

  • Kyeongwoo Park;Hyeonjin Sim;Sunhee Kim;Yongwoo Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2024
  • Recent research on embedded systems has become increasingly important due to their central role in high-performance embedded devices, including artificial intelligence, autonomous driving, and energy management technologies. Embedded systems are specialized computer systems designed to perform specific tasks while optimizing performance and minimizing memory usage. RISC-V, an open RISC-based instruction set architecture developed by the University of Berkeley in 2010, is well-suited for these systems. In addition to the base 32-bit integer instruction set, RISC-V supports extensions such as the M-extension for multiplication and division and the C-extension for instruction compression. In this paper, we propose the design of a 32-bit 5-stage pipeline RV32IMC processor aimed at high-performance embedded devices. By incorporating the RV32IMC instruction set, the proposed processor achieves enhanced computational efficiency and reduced code size, making it a strong candidate for energy-efficient, high-performance embedded applications. Furthermore, the design was validated on an Artix-7 field-programmable gate array, demonstrating the processor's feasibility and potential benefits for embedded systems.

  • PDF

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF