• Title/Summary/Keyword: artificial intelligence design

Search Result 773, Processing Time 0.024 seconds

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.

A Study on the Design of Humane Animal Care System and Java Implementation

  • Gong, Hui-Su;Weon, Sunghyun;Huh, Jun-Ho
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1225-1236
    • /
    • 2018
  • Nowadays, the number of pets in the Republic of Korea (ROK) is continuously growing, and people's perception of animals is changing. Accordingly, new systems and services for them are emerging. Despite such changes, there are still many serious problems such as animal cruelty, abandonment, and factory-type breeding places. In this study, we have conducted a research on the design of a humane animal care system and its implementation with Java. The methodology involved in the design will enable managing animals' safety and health by systematically categorizing and studying each health-related issue for protection. Moreover, with this methodology, animals can avert risks through periodic examinations, and the analyzed data will be useful in managing animals efficiently. Thus, this paper proposes a system that monitors whether the owners actually carry out such obligation. Authors expect this convenient, easily accessible system to lead to a more humane approach to the animals they own. The authors plan to establish an animal care network together with local animal associations for the active promotion of the system implemented in this study, in the hope that the network will be extended nationwide.

A Study on the Conceptual Design of Smart App Authoring Tool

  • Chang, Young-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • IT environment gets more complicated in terms of open platform, network standards, device design and hardware, etc. Smart network and application are in the fields of corporate as well as national competition for future fusion technology. In development environment focused on computers, the ideas of authoring tool have been presented in terms of improved software productivity. In smart environment where subdividing works are consecutively done, current authoring tool should be effectively updated for effective development of programs and easier access to business works. The basic concept of a new conceptual App development tool, Smart App Authoring Tool, which has been designed in this study and enables to apply on-site requirements to smart phones, is to develop Apps on the level using easy-to-learn Word or Excel in a computer. Therefore, this study is intended to design a conceptual Smart App Authoring Tool to optimize the cost and time for developing and maintaining new application services under various smart phone platform environments. Based on the performance of smart app authoring tool herein, every people can develop a smart app program at moderate level. So this paper have designed a conceptual smart app authoring tool. This study presented educational efficiency of the authoring tool by developing business Apps under various business environments and applying them under university and high school environments.

Turbomachinery design by a swarm-based optimization method coupled with a CFD solver

  • Ampellio, Enrico;Bertini, Francesco;Ferrero, Andrea;Larocca, Francesco;Vassio, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.149-170
    • /
    • 2016
  • Multi-Disciplinary Optimization (MDO) is widely used to handle the advanced design in several engineering applications. Such applications are commonly simulation-based, in order to capture the physics of the phenomena under study. This framework demands fast optimization algorithms as well as trustworthy numerical analyses, and a synergic integration between the two is required to obtain an efficient design process. In order to meet these needs, an adaptive Computational Fluid Dynamics (CFD) solver and a fast optimization algorithm have been developed and combined by the authors. The CFD solver is based on a high-order discontinuous Galerkin discretization while the optimization algorithm is a high-performance version of the Artificial Bee Colony method. In this work, they are used to address a typical aero-mechanical problem encountered in turbomachinery design. Interesting achievements in the considered test case are illustrated, highlighting the potential applicability of the proposed approach to other engineering problems.

Design and operation of the transparent integral effect test facility, URI-LO for nuclear innovation platform

  • Kim, Kyung Mo;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.776-792
    • /
    • 2021
  • Conventional integral effect test facilities were constructed to enable the precise observation of thermal-hydraulic phenomena and reactor behaviors under postulated accident conditions to prove reactor safety. Although these facilities improved the understanding of thermal-hydraulic phenomena and reactor safety, applications of new technologies and their performance tests have been limited owing to the cost and large scale of the facilities. Various nuclear technologies converging 4th industrial revolution technologies such as artificial intelligence, drone, and 3D printing, are being developed to improve plant management strategies. Additionally, new conceptual passive safety systems are being developed to enhance reactor safety. A new integral effect test facility having a noticeable scaling ratio, i.e., the (UNIST reactor innovation loop (URI-LO), is designed and constructed to improve the technical quality of these technologies by performance and feasibility tests. In particular, the URI-LO, which is constructed using a transparent material, enables better visualization and provides physical insights on multidimensional phenomena inside the reactor system. The facility design based on three-level approach is qualitatively validated with preliminary analyses, and its functionality as a test facility is confirmed through a series of experiments. The design feature, design validation, functionality test, and future utilization of the URI-LO are introduced.

A Study on the Appearance Design and Behavior of a Humanoid Robot to Receive Donations Effectively (효과적으로 기부를 받기 위한 인간형 로봇의 외형 디자인 및 행동에 관한 연구)

  • Eum, Younseal;Song, Hyunjong;Kim, Yitaek;Min, Injoon;You, Dongha;Han, Jeakweon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.163-169
    • /
    • 2019
  • Robot ALICE@ERICA is a service robot developed to receive donations and to provide information services. ALICE@ERICA stands for Artificial Learning Intelligence robot for Culture and Entertainment at ERICA. In order to achieve the specific purpose of receiving donations, proper appearance design, appropriate movement and good communication skills are required in terms of HRI. In this paper, we introduce three strategies for developing robots to receive donations effectively. The first is to design a robot that makes people feel intimacy, the second is to approach only one of several people as a donor, and finally the donor communicates with video contents and voice recognition. A survey was conducted on the person who showed the reaction after the robot donated money in public places. Based on the survey results, it is proved that the method presented in this study effectively contributed to fund raising. If robots can perform actions that require high level of HRI, such as donation, robots can contribute more to human society. We hope that this study contributes to the improvement of human happiness.

Meta's Metaverse Platform Design in the Pre-launch and Ignition Life Stage

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.121-131
    • /
    • 2022
  • We look at the initial stage of Meta (previous Facebook)'s new metaverse platform and investigate its platform design in pre-launch and ignition life stage. From the Rocket Model (RM)'s theoretical logic, the results reveal that Meta firstly focuses on investing in key content developers by acquiring virtual reality (VR), video, music content firms and offering production support platform of the augmented reality (AR) content, 'Spark AR' last three years (2019~2021) for attracting high-potential developers and users. In terms of three matching criteria, Meta develops an Artificial Intelligence (AI) powered translation software, partners with Microsoft (MS) for cloud computing and AI, and develops an AI platform for realistic avatar, MyoSuite. In 'connect' function, Meta curates the game concept submitted by game developers, welcomes other game and SNS based metaverse apps, and expands Horizon Worlds (HW) on VR devices to PCs and mobile devices. In 'transact' function, Meta offers 'HW Creator Funding' program for metaverse, launches the first commercialized Meta Avatar Store on Meta's conventional SNS and Messaging apps by inviting all fashion creators to design and sell clothing in this store. Mata also launches an initial test of non-fungible token (NFT) display on Instagram and expands it to Facebook in the US. Lastly, regarding optimization, especially in the face of recent data privacy issues that have adversely affected corporate key performance indicators (KPIs), Meta assures not to collect any new data and to make its privacy policy easier to understand and update its terms of service more user friendly.

New or Renew: Constructing Tomorrow with Kit of Parts

  • Ilkay Standard;Sena Kucukayan
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.97-102
    • /
    • 2024
  • In this paper, we would like to share our ongoing research on global population and demographic shifts and the corresponding need for diverse responses. As population growth varies worldwide, the pressing issue is the current global housing shortage. The USA alone lacks 4 million homes, underlining the urgency for new construction and renewal of existing. Our focus is primarily on new building processes, which must also incorporate elements of renewal for future sustainability. Our research addresses several key questions: How will roles for construction professionals change? What should be the primary goal of the design process? What types of technologies are currently available, and which aspects of the process can be enhanced with AI? A significant part of our study is exploring sustainable building methods that reduce embodied carbon and increase speed of construction. Our goal is to extend the transition from smart homes to cities, analyzing the evolution towards smart communities and cities. A critical aspect of our research is the 'kit of parts concept, involving prefabrication and modular construction. This approach is essential for both rebuilding and new projects, potentially lowering costs in manufacturing and design for long term. Lastly, we present a detailed comparison of the construction industry with manufacturing.

Analysis of Female Lower Body Shapes for the Development of Slacks Patterns: Exploring Body Clusters Using Machine Learning

  • Ji Min Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.434-440
    • /
    • 2024
  • SIZE KOREA updates body measurement data every five years, providing essential information for the fashion industry. This anthropometric data is widely used to diagnose consumer body shapes and develop optimal clothing sizes. Artificial intelligence, particularly machine learning, excels in predicting such body shape classifications. This study seeks to enhance the suitability of clothing design by applying the new analytical methodology of machine learning techniques to better capture and classify the unique body shapes of Korean women. In this study, machine learning techniques such as K-means clustering, Silhouette analysis, and Decision Tree analysis were used to classify the lower body shapes of Korean women in their twenties and identify standard body shapes useful for slacks design. The results showed that the lower body of the age group could be classified into three categories: 'small stature' (the majority), 'tall with an average lower body volume,' and 'medium height with a fuller lower body' (the smallest share). The three-cluster approach is validated through Silhouette analysis, which minimizes misclassification. Decision Tree analysis then further defines the criteria for these clusters, highlighting waist height and hip depth as the most significant factors, achieving a classification accuracy of 90.6%. While this study is not directly related to Robotic Process Automation, its detailed analysis of body shapes for slacks patterns can aid RPA in clothing production. Future research should continue integrating machine learning in human body and fashion design studies.

Development of 3D Printed Fashion Jewelry Design Using Generative AI (생성형 AI를 활용한 3D 프린팅 패션 주얼리 디자인 개발)

  • Bo Ae Hwang;Jung Soo Lee
    • Journal of Fashion Business
    • /
    • v.28 no.4
    • /
    • pp.129-148
    • /
    • 2024
  • With the advent of the 4th industrial era and the development of digital technologies such as artificial intelligence (AI), metaverse, 3D printing, and 3D virtual wearing systems, the fashion industry continues to attempt to use digital technology and introduce it into various areas. The purpose of this study was to determine whether fashion and digital technology could be combined to create works and to suggest ways to apply digital technology in the fashion industry. As a research method, image generative AI, Midjourney was applied to the initial design ideation stage to derive inspiration images. 3D printing technique was then introduced as a production method to print fashion jewelry. As a result of the research, a total of six jewelry designs printed with a 3D printer were developed. One necklace, one bracelet, three earrings, and one ring were developed. This study identified the possibility of applying digital technology to real fashion jewelry design products by designing jewelry based on inspirational images derived from image generation AI and producing pieces of fashion jewelry with 3D modeling tasks and 3D printing outputs. This study is significant in that it expands the expression area of fashion jewelry design that combines digital technology.