• 제목/요약/키워드: artificial intelligence algorithms

검색결과 518건 처리시간 0.027초

인공지능 머신러닝 딥러닝 알고리즘의 활용 대상과 범위 시스템 연구 (Application Target and Scope of Artificial Intelligence Machine Learning Deep Learning Algorithms)

  • 박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.177-179
    • /
    • 2022
  • Google Deepmind Challenge match에서, Alphago가 바둑 대결에서 4승1패로 한국의 이세돌(인간)에 승리하였다. 드디어, 인공지능은 인간 지능의 활용을 넘어서고 있는 것이다. 한국 정부의 디지털뉴딜의 사업예산은 2022년 9조원이며, 인공지능 학습용 data 구축사업은 301종을 추가로 확보한다. 2023년부터는 산업의 전 분야에서 인공지능의 학습의 활용과 적용으로 산업 패러다임이 변화될 것이다. 본 논문은 인공지능 알고리즘을 활용하기 위한 연구를 한다. 인공지능 학습에서 data의 분석과 판단을 중심으로, 인공지능 머신러닝과 딥러닝 학습에서의 알고리즘의 적절한 활용 대상과 활용 범위에 대한 연구를 한다. 본 연구는 4차산업혁명기술의 인공지능과 5차산업혁명기술의 인공지능로봇 활용의 기초자료를 제공할 것이다.

  • PDF

Deep Learning-Based Artificial Intelligence for Mammography

  • Jung Hyun Yoon;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • 제22권8호
    • /
    • pp.1225-1239
    • /
    • 2021
  • During the past decade, researchers have investigated the use of computer-aided mammography interpretation. With the application of deep learning technology, artificial intelligence (AI)-based algorithms for mammography have shown promising results in the quantitative assessment of parenchymal density, detection and diagnosis of breast cancer, and prediction of breast cancer risk, enabling more precise patient management. AI-based algorithms may also enhance the efficiency of the interpretation workflow by reducing both the workload and interpretation time. However, more in-depth investigation is required to conclusively prove the effectiveness of AI-based algorithms. This review article discusses how AI algorithms can be applied to mammography interpretation as well as the current challenges in its implementation in real-world practice.

A lightweight true random number generator using beta radiation for IoT applications

  • Park, Kyunghwan;Park, Seongmo;Choi, Byoung Gun;Kang, Taewook;Kim, Jongbum;Kim, Young-Hee;Jin, Hong-Zhou
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.951-964
    • /
    • 2020
  • This paper presents a lightweight true random number generator (TRNG) using beta radiation that is useful for Internet of Things (IoT) security. In general, a random number generator (RNG) is required for all secure communication devices because random numbers are needed to generate encryption keys. Most RNGs are computer algorithms and use physical noise as their seed. However, it is difficult to obtain physical noise in small IoT devices. Since IoT security functions are required in almost all countries, IoT devices must be equipped with security algorithms that can pass the cryptographic module validation programs of each country. In this regard, it is very cumbersome to embed security algorithms, random number generation algorithms, and even physical noise sources in small IoT devices. Therefore, this paper introduces a lightweight TRNG comprising a thin-film beta-radiation source and integrated circuits (ICs). Although the ICs are currently being designed, the IC design was functionally verified at the board level. Our random numbers are output from a verification board and tested according to National Institute of Standards and Technology standards.

알고리즘에 의한 음악의 작곡 (Algorithmic music composition)

  • 윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.652-655
    • /
    • 1997
  • An exploration for an intelligence paradigm has been delineated. Artificial intelligence and artificial life paradigms seem to fail to show the whole picture of human intelligence. We may understand the human intelligence better by adding the emotional part of human intelligence to the intellectual part of human intelligence. Emotional intelligence is investigated in terms of composing machine as a modern abstract art. Various algorithmic composition and performance concepts are currently being investigated and implemented. Intelligent mapping algorithms restructure the traditional predetermined composition algorithms. Music based on fractals and neural networks is being composed. Also, emotional intelligence and aesthetic aspects of Korean traditional music are investigated in terms of fractal relationship. As a result, this exploration will greatly broaden the potentials of the intelligence research. The exploration of art in the view of intelligence, information and structure will restore the balanced sense, of art and science which seeks happiness in life. The investigations of emotional intelligence will establish the foundations of intelligence, information and control technologies.

  • PDF

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

Application Analysis of Artificial Intelligence Technology in Museum Concept Design

  • Chen Xi;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.321-327
    • /
    • 2023
  • The current rapid development of artificial intelligence technology has involved all aspects of the production field. The development of various algorithms and programs has pushed artificial intelligence to a new peak. Due to its complexity and diversity in the field of architectural design, the positive impact of artificial intelligence technology on architectural design is discussed from the perspective of conceptual design. For museums, which are one of the increasingly popular public facilities, the introduction of artificial intelligence technology has provided certain help in assisting the conceptual design of the museum. This article analyzes the theoretical and practical support of artificial intelligence technology in improving conceptual design, analyzing the architectural appearance, structural layout, materials, etc., to increase the feasibility and practicality of assisting conceptual design. It has certain reference significance for building a modern, advanced, international and interactive modern museum.

머신러닝 기반 금속외관 결함 검출 비교 분석 (Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection)

  • 이세훈;강성환;신요섭;최오규;김시종;강재모
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.834-841
    • /
    • 2022
  • 최근 스마트팩토리와 인공지능 기술의 수요 증가로 인해 다양한 분야에서 인공지능 기술을 적용하는 연구가 진행되고 있다. 결함 검사 분야에서도 인공지능 알고리즘을 도입하기 위한 노력을 기울이고 있다. 특히, 금속 외관의 결함을 검출하는 연구는 다른 소재(목재, 플라스틱, 섬유 등)의 결함을 검출하는 연구에 비해 많은 연구가 이루어지고 있다. 본 논문에서는 머신러닝 기법(서포터 벡터 머신(SVM: Support Vector Machine), 소프트맥스 회귀(Softmax Regression), 결정 트리(Decesion Tree))과 차원 축소 알고리즘(주성분 분석(PCA: Principal Component Analysis), 오토인코더(AutoEncoder))의 9가지 조합과 2가지 합성곱신경망(CNN: Convolutional Neural Network) 기법(자체 알고리즘, ResNet)의 금속 외관의 결함 분류 성능 및 속도를 비교하고 분석하는 연구를 수행하고자 한다. 두 종류의 학습 데이터셋((i) 공용 데이터셋(Public Dataset), (ii) 실측 데이터셋(Actual Dataset))에 대한 실험을 통해 각 데이터셋에 대한 성능 및 속도를 비교 분석하고, 가장 효율적인 알고리즘을 찾아낸다.

인공지능의 활용, 프로젝트 관리 그리고 활용 리스크에 대한 문헌 연구 (A Literature Review Study in the Field of Artificial Intelligence (AI) Aplications, AI-Related Management, and AI Application Risk)

  • 이준기;남효경
    • 정보화정책
    • /
    • 제29권2호
    • /
    • pp.3-36
    • /
    • 2022
  • 지금까지의 인공지능 연구는 컴퓨터 분야의 새로운 알고리즘에 관한 것이 대부분이며, 인공지능의 활용 사례연구도 주로 인간과의 대결에서 승리한 것을 보여 주고 있다. 사회와 기업의 지속적인 관심 속에 학계에서도 단순 기술적 측면의 인공지능 연구에서 벗어나 인공지능의 활용적 측면, 특히 조직·전략과의 연계, 인공지능의 활용 리스크 등의 문제에서 이론을 정립하려는 노력이 최근 시도되고 있다. 본 문헌 연구에서는 2015년부터 2022년 현재까지 인공지능의 활용에 관한 연구를 인공지능 활용 분야, 인공지능 프로젝트 관리 그리고 인공지능의 활용 리스크 측면에서 조사하였다. 또한 세부 분석을 위하여 인용 수 20개 이상의 785개 연구에 대하여 세부 분야로 분류하여 조사하였다. 연구 결과 아직 많은 인공지능의 활용연구는 산업 또는 기업 업무별 과거 데이터를 중심으로 한 프로토타이핑 프로젝트 연구에 치우쳐져 있었다. 향후 인공지능 활용을 위한 조직 구조, 프로젝트 선정과 적용과정 등의 연구가 인공지능 활용의 리스크 연구와 함께 필요할 것으로 보인다.

유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점 (Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective)

  • 김기환;이상협
    • 대한영상의학회지
    • /
    • 제82권1호
    • /
    • pp.12-28
    • /
    • 2021
  • 유방촬영술은 유방암 검진 및 진단을 위한 기본적인 영상 검사이지만, 판독이 어려우며 높은 숙련도를 필요로 한다고 잘 알려져 있다. 이러한 어려움을 극복하기 위해 최근 몇 년 사이에 인공지능을 이용한 유방암 검출 알고리즘들이 활발히 연구되고 있다. 본 종설에서 저자는 고전적인 computer-aided detection 소프트웨어 대비 최근 많이 사용되는 딥러닝의 특징을 알아보고, 딥러닝 알고리즘의 개발 방법과 임상적 검증 방법에 대해서 기술하였다. 또한 딥러닝 기반의 검진 유방촬영술의 판독 방법 분류, 유방 치밀도 평가, 그리고 유방암 위험도 예측 모델 등을 위한 딥러닝 연구들도 소개하였다. 마지막으로 유방촬영술 관련 인공지능 기술들에 대한 영상의학과 전문의의 관심과 의견의 필요성을 기술하였다.

데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구 (A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI)

  • 허선우;백동현
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.