We propose an intelligent interface algorithm using hand gesture recognition information based on artificial intelligence. This method is functionally an interface that recognizes various motions quickly and intelligently by using MediaPipe and artificial intelligence techniques such as KNN, LSTM, and CNN to track and recognize user hand gestures. To evaluate the performance of the proposed algorithm, it is applied to a self-made 2D top-view racing game and robot control. As a result of applying the algorithm, it was possible to control various movements of the virtual object in the game in detail and robustly. And the result of applying the algorithm to the robot control in the real world, it was possible to control movement, stop, left turn, and right turn. In addition, by controlling the main character of the game and the robot in the real world at the same time, the optimized motion was implemented as an intelligent interface for controlling the coexistence space of virtual and real world. The proposed algorithm enables sophisticated control according to natural and intuitive characteristics using the body and fine movement recognition of fingers, and has the advantage of being skilled in a short period of time, so it can be used as basic data for developing intelligent user interfaces.
Kim, Do Kyun;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
Journal of Satellite, Information and Communications
/
v.12
no.2
/
pp.42-45
/
2017
It is known that power line communication systems have more noise than general wired communication systems due to the high voltage that flows in power line cables, and the noise causes a serious performance degradation. In order to mitigate performance degradation due to such noise, this paper proposes an artificial intelligence algorithm based on polynomial regression, which detects signals in the impulse noise environment in the power line communication system. The polynomial regression method is used to predict the original transmitted signal from the impulse noise signal. Simulation results show that the signal detection performance in the impulse noise environment of the power line communication is improved through the artificial intelligence algorithm proposed in this paper.
Collecting a rich but meaningful training data plays a key role in machine learning and deep learning researches for a self-driving vehicle. This paper introduces a detailed overview of existing open-source simulators which could be used for training self-driving vehicles. After reviewing the simulators, we propose a new effective approach to make a synthetic autonomous vehicle simulation platform suitable for learning and training artificial intelligence algorithms. Specially, we develop a synthetic simulator with various realistic situations and weather conditions which make the autonomous shuttle to learn more realistic situations and handle some unexpected events. The virtual environment is the mimics of the activity of a genuine shuttle vehicle on a physical world. Instead of doing the whole experiment of training in the real physical world, scenarios in 3D virtual worlds are made to calculate the parameters and training the model. From the simulator, the user can obtain data for the various situation and utilize it for the training purpose. Flexible options are available to choose sensors, monitor the output and implement any autonomous driving algorithm. Finally, we verify the effectiveness of the developed simulator by implementing an end-to-end CNN algorithm for training a self-driving shuttle.
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.1
/
pp.33-38
/
2024
In this paper, we propose the implementation of a drone delivery system using artificial intelligence in a situation where the use of drones is rapidly increasing and human errors are occurring. This system requires the implementation of an accurate control algorithm, assuming that last-mile delivery is delivered to the apartment veranda. To recognize the delivery location, a recognition system using the YOLO algorithm was implemented, and a delivery system was installed on the drone to measure the distance to the object and increase the delivery distance to ensure stable delivery even at long distances. As a result of the experiment, it was confirmed that the recognition system recognized the marker with a match rate of more than 60% at a distance of less than 10m while the drone hovered stably. In addition, the drone carrying a 500g package was able to withstand the torque applied as the rail lengthened, extending to 1.5m and then stably placing the package down on the veranda at the end of the rail.
Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.
Generally, the existing Artificial Intelligence (AI) systems were designed for specific purposes and their capabilities handle only specific problems. Alternatively, Artificial General Intelligence can solve new problems as well as those that are already known. Recently, General Video Game Playing the game AI version of General Artificial Intelligence, has garnered a large amount of interest among Game Artificial Intelligence communities. Although video games are the sole concern, the design of a single AI that is capable of playing various video games is not an easy process. In this paper, we propose a GreedyUCB1 algorithm and rollout method that were formulated using the knowledge from a game analysis for the Monte-Carlo Tree Search game AI. An AI that used our method was ranked fourth at the GVG-AI (General Video Game-Artificial Intelligence) competition of the IEEE international conference of CIG (Computational Intelligence in Games) 2014.
Renewable energy is emerging as a reliable alternative source of energy, it is much safer, cleaner than conventional sources and has contributed significantly in this sector. However, there are still some challenges that needed to address this evolving technology. Artificial Intelligence (A. I.) can assess the past, optimize the present, and forecast the future. Therefore, A. I. will resolve most of these problems. Artificial intelligence is complex in nature, but it reduces error and aims to reach a greater degree of precision which make renewables smarter. This paper provides an overview of frequently used A. I. methods in solar energy applications. A sample algorithm is also provided for literature purposes and knowledge transfer.
Journal of the Korean Society of Industry Convergence
/
v.24
no.5
/
pp.531-536
/
2021
As artificial intelligence technology advances, it is being applied to various application fields. Artificial intelligence is performing well in the field of image recognition and classification. Chip design specialized in this field is also actively being studied. Artificial intelligence-specific chips are designed to provide optimal performance for the applications. At the design task, memory component optimization is becoming an important issue. In this study, the optimal algorithm for the memory size exploration is presented, and the optimal memory size is becoming as a important factor in providing a proper design that meets the requirements of performance, cost, and power consumption.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.57-60
/
2021
본 논문에서는 기지 설비 중 주요 회전기기인 펌프의 이상탐지 알고리즘을 제안한다. 현재 인공지능을 활용하여 생산현장을 혁신하고자 하는 시도가 진행되고 있으나 외산 솔루션에 대한 의존도가 높은 것에 비해 국내 실정에 맞지 않는 경우가 많다. 이에 따라, 선행 연구를 통해 국내 실정에 맞는 인공지능 기술 도입이 필요하다. 본 연구에서는 VAE(Variational Auto Encoder) 알고리즘을 활용해 회전기기의 고장을 진단하는 알고리즘을 개발하였다. 본 연구 수행을 통한 회전기기의 고장 예지·진단 시스템 개발로 설비의 이상 징후 포착, 부품의 교환 시기 등 보수 일정을 예측하고 최종적으로 이를 통한 설비 가동의 효율 증대와 에너지 비용 감소의 효과를 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.13-14
/
2023
집중 안전 점검의 대상인 노후 건축물에서 균열은 건물의 안전도를 점검할 수 있는 지표이다. 안전 점검에 드론을 활용하면서 고해상도의 드론 기반 균열 이미지 수집이 가능해졌고, 육안이 아닌 AI기반으로 균열을 탐지, 구획화할 수 있다. 본 연구에서는 주변 사물과 배경에 구애받지 않고 안전 점검이 가능한 구획화 알고리즘을 제안한다. METU와 POC데이터셋을 가공하여 데이터셋을 구축하고, 이를 바탕으로 ResNet50을 통해 균열과 유사한 배경을 분류하였으며, 균열 구획화 모델을 선정하여 DesneNet201-UNet++으로 mIoU 82.27%를 달성하였다. 본 연구는 노후 건축물 안전 점검에 필요한 균열 폭 추정에 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.