• Title/Summary/Keyword: artificial bee colony (ABC) algorithm

Search Result 35, Processing Time 0.023 seconds

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization of converted plug-in hybrid electric vehicle

  • Gujarathi, Pritam K.;Shah, Varsha A.;Lokhande, Makarand M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2020
  • The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer (GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for various values of speeds and torque. The optimization performance and its environmental impact are discussed in detail. The optimization results obtained are verified by real data engine maps. It is also compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and complexity with less computation time providing a balance of exploitation and exploration and passes repeatability towards use for real-time optimization.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1209-1224
    • /
    • 2014
  • In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

Modeling of Co(II) adsorption by artificial bee colony and genetic algorithm

  • Ozturk, Nurcan;Senturk, Hasan Basri;Gundogdu, Ali;Duran, Celal
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.363-371
    • /
    • 2018
  • In this work, it was investigated the usability of artificial bee colony (ABC) and genetic algorithm (GA) in modeling adsorption of Co(II) onto drinking water treatment sludge (DWTS). DWTS, obtained as inevitable byproduct at the end of drinking water treatment stages, was used as an adsorbent without any physical or chemical pre-treatment in the adsorption experiments. Firstly, DWTS was characterized employing various analytical procedures such as elemental, FT-IR, SEM-EDS, XRD, XRF and TGA/DTA analysis. Then, adsorption experiments were carried out in a batch system and DWTS's Co(II) removal potential was modelled via ABC and GA methods considering the effects of certain experimental parameters (initial pH, contact time, initial Co(II) concentration, DWTS dosage) called as the input parameters. The accuracy of ABC and GA method was determined and these methods were applied to four different functions: quadratic, exponential, linear and power. Some statistical indices (sum square error, root mean square error, mean absolute error, average relative error, and determination coefficient) were used to evaluate the performance of these models. The ABC and GA method with quadratic forms obtained better prediction. As a result, it was shown ABC and GA can be used optimization of the regression function coefficients in modeling adsorption experiments.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism

  • Fiouz, A.R.;Obeydi, M.;Forouzani, H.;Keshavarz, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.501-519
    • /
    • 2012
  • Truss weight is one of the most important factors in the cost of construction that should be reduced. Different methods have been proposed to optimize the weight of trusses. The artificial bee colony algorithm has been proposed recently. This algorithm selects the lightest section from a list of available profiles that satisfy the existing provisions in the design codes and specifications. An important issue in optimization algorithms is how to impose constraints. In this paper, the artificial bee colony algorithm is used for the discrete optimization of trusses. The fly-back mechanism is chosen to impose constraints. Finally, with some basic examples that have been introduced in similar articles, the performance of this algorithm is tested using the fly-back mechanism. The results indicate that the rate of convergence and the accuracy are optimized in comparison with other methods.

An Improved Artificial Bee Colony Algorithm Based on Special Division and Intellective Search

  • Huang, He;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.433-439
    • /
    • 2019
  • Artificial bee colony algorithm is a strong global search algorithm which exhibits excellent exploration ability. The conventional ABC algorithm adopts employed bees, onlooker bees and scouts to cooperate with each other. However, its one dimension and greedy search strategy causes slow convergence speed. To enhance its performance, in this paper, we abandon the greedy selection method and propose an artificial bee colony algorithm with special division and intellective search (ABCIS). For the purpose of higher food source research efficiency, different search strategies are adopted with different employed bees and onlooker bees. Experimental results on a series of benchmarks algorithms demonstrate its effectiveness.