• Title/Summary/Keyword: arrhenius equation

Search Result 275, Processing Time 0.027 seconds

Gasification reactivity of Chinese Shinwha Coal Chars with Steam (스팀을 이용한 중국산 신화 석탄 촤 가스화 반응에 관한 연구)

  • Kang, Min-Woong;Seo, Dong-Kyun;Kim, Yong-Tak;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, carbon conversion was measured using an electronic mass balance. In a lab scale furnace, each coal sample was pyrolyzed in a nitrogen environment and became coal char, which was then gasified with steam under isothermal conditions. The reactivity of coal char was investigated at various temperatures and steam concentrations. The VRM(volume reaction model), SCM(shrinking core model), and RPM(random pore model) were used to interpret experimental data. For each model the activation energy(Ea), pre-exponential factor (A), and reaction order(n) of the coal char-steam reaction were determined by applying the Arrhenius equation into the data obtained with thermo-gravimetric analysis(TGA). According to this study, it was found that experimental data agreed better with the VRM and SCM for 1,000 and $1,100^{\circ}C$, and the RPM for 1,200 and $1,300^{\circ}C$. The reactivity of chars increased with the increase of gasification temperature. The structure parameter(${\psi}$) of the surface area for the RPM was obtained.

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

A Study of Transonic Premixed Combustion in a Diverging Channel Using Asymptotic Analysis (점근해석을 이용한 확대형 채널 내의 천음속 예혼합 연소에 관한 연구)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.75-83
    • /
    • 2005
  • A steady transonic dilute premixed combustion in a diverging channel is investigated by using asymptotic analysis. This model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow is described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differential equation for the calculation of the reactant mass fraction in the combustible gas. Also the asymptotic analysis reveals the similarity parameters that govern the reacting flow problem. The results show the complicated nonlinear interaction between the convection, reaction, and geometry effects and its effect on the flow behavior.

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

Evaluation of Static Spring Constant and Accelerated Life Prediction for Compression Set of Polyurethane Resilient Pad in Rail Fastening System

  • Lee, Seung-Won;Park, Jun-Young;Park, Eun-Young;Ryu, Sung-Hwan;Bae, Seok-Hu;Kim, Nam-Il;Yun, Ju-Ho;Yoon, Jeong-Hwan
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Resilient pads play a major role in reducing the impact of loads on a rail in a rail-fastening system, which is essentially used for a concrete track. Although a compression set test is commonly used to measure the durability of a resilient pad, the static spring constant is often observed to be different from the fatigue test. In this study, a modified compression set test method was proposed to monitor the variations in the compression set and static spring constant of a resilient pad with respect to temperature and time. In addition, the life of the resilient pad was predicted by performing an acceleration test based on the Arrhenius equation.

A Study on the Physical Characteristics of the Low-voltage Circuit Breaker Based on the Accelerated Degradation Test (가속 열화 시험에 따른 저압용 차단기의 물리적 특성에 관한 연구)

  • Sin dong, Kang;Jae-Ho, Kim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2022
  • This study analyzed the characteristics of insulation resistance and operating time based on an accelerated degradation test of a low-voltage circuit breaker. The experimental sample used a molded case circuit breaker (MCCB) and an earth leakage circuit breaker (ELCB). After measuring the insulation resistance of the circuit breakers, the leakage current was affected by an external rather than an internal structure. Furthermore, the insulation resistance of the circuit breakers with accelerated degradation was measured using a Megger insulation tester. In the accelerated degradation test, aging times of five, ten, 15, and 20 years were applied according to a temperature derived using the Arrhenius equation. Circuit breakers with an equivalent life of ten, 15, and 20 years had increased insulation resistance compared to those with less degradation time. In particular, the circuit breaker with an equivalent life of ten years had the highest insulation resistance. Component analysis of the circuit breaker manufactured through an accelerated degradation test confirmed that the timing of the increase in insulation resistance and the time of additive loss were the same. Finally, after analyzing the operating time of the circuit breakers with degradation, it was confirmed that the MCCB did not change, but the ELCB breaker failed.

Kinetics of Water Vapor Adsorption by Chitosan-based Nanocomposite Films

  • Seog, Eun-Ju;Zuo, Li;Lee, Jun-Ho;Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.330-335
    • /
    • 2008
  • Water vapor adsorption kinetics of 3 different types of chitosan-based films, i.e., control chitosan, chitosan/montmorillionite (Na-MMT), and chitosan/silver-zeolite (Ag-Ion) nanocomposite films, were investigated at temperature range of $10-40^{\circ}C$. In all the films, water vapor is initially adsorbed rapidly and then it comes slowly to reach equilibrium condition. Reasonably good straight lines were obtained with plotting of 1/($m-m_0$) vs. l/t. It was found that water vapor adsorption kinetics of chitosan-based films was accurately described by a simple empirical model and the rate constant of the model followed temperature dependence according to Arrhenius equation. Arrhenius kinetic parameters ($E_a$ and $k_o$) for water vapor adsorption by chitosan-based films showed a kinetic compensation effect between the parameters with the isokinetic temperature of 315.52 K.

A comparative study for steam-methane reforming reaction analysis model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Jung, Tae-Yong;Dong-Hoon, Shin;Nam, Jin-Hyn;Kim, Yong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1997-2002
    • /
    • 2007
  • The reformer is one of the most important chemical processes for the production of high purity hydrogen from fossil fuel. This study compares zero-dimensional model with CFD models for reaction analysis of methane-steam reformer. The zero-dimensional model is an empirical equation, however CFD model uses reactions of Arrhenius type. Because the reaction coefficients of the steam-methane catalytic reforming have not been reported before in the form of Arrhenius type, the present study aims to find the appropriate reaction coefficients. The used CFD code is Fluent 6.2 version. Several models are compared for the case of various operating temperature, mass of catalyst and steam to methane ratio.

  • PDF

Determining the Safer Thickness of the Epoxy Coating on Wooden Utensils (식품 안전성 확보를 위한 목재 식기용 에폭시 코팅의 두께 결정)

  • 이광수;임동길;김상엽;장미란;김우성;이영자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.447-450
    • /
    • 2004
  • Overall migration through epoxy layer coated wood was investigated to estimate the coating thickness satisfying the regulatory limit. As an index of overall migration, KMnO$_4$ oxidizable extractives by the food simulant water solution was used. Migration pattern in interest range could described by a simple diffusion model and the temperature dependence of the permeability index could be explained by Arrhenius equation. The thickness of epoxy coating greater than 0.004 mm was analyzed to be required for satisfying the regulatory guideline.

Coupled Analysis of Structure and Surface Ablation in Solid Rocket Nozzle (삭마반응을 고려한 고체 추진기관 노즐 조립체의 열반응 및 구조해석)

  • Kim, Yun-Chul;Doh, Young-Dae;Hahm, Hee-Cheol;Moon, Soon-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.565-569
    • /
    • 2011
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermo-structural analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code.

  • PDF