• Title/Summary/Keyword: array-CGH

Search Result 43, Processing Time 0.016 seconds

Targeting SHCBP1 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Cells

  • Tao, Han-Chuan;Wang, Hai-Xiao;Dai, Min;Gu, Cheng-Yu;Wang, Qun;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5645-5650
    • /
    • 2013
  • Src homology 2 domain containing (SHC) is a proto-oncogene which mediates cell proliferation and carcinogenesis in human carcinomas. Here, the SHC SH2-domain binding protein 1 (SHCBP1) was first established to be up-regulated in human hepatocellular carcinoma (HCC) tissues by array-base comparative genome hybridization (aCGH). Meanwhile, we examine and verify it by quantitative real-time PCR and western blot. Our current data show that SHCBP1 was up-regulated in HCC tissues. Overexpression of SHCBP1 could significantly promote HCC cell proliferation, survival and colony formation in HCC cell lines. Furthermore, knockdown of SHCBP1 induced cell cycle delay and suppressed cell proliferation. Furthermore, SHCBP1 could regulate the expression of activate extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclin D1. Together, our findings indicate that SHCBP1 may contribute to human hepatocellular carcinoma by promoting cell proliferation and may serve as a molecular target of cancer therapy.

Sex-related Differences in DNA Copy Number Alterations in Hepatitis B Virus-Associated Hepatocellular Carcinoma

  • Zhu, Zhong-Zheng;Wang, Dong;Cong, Wen-Ming;Jiang, Hongmei;Yu, Yue;Wen, Bing-Ji;Dong, Hui;Zhang, Xiao;Liu, Shu-Fang;Wang, Ai-Zhong;Zhu, Guanshan;Hou, Lifang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.225-229
    • /
    • 2012
  • Background: Males have a higher prevalence of hepatocellular carcinoma (HCC) than females in general, but the reasons for the sex disparity are still obscure. DNA copy number alteration (CNA) is a major feature of solid tumors including HCC, but whether CNA plays a role in sex-related differences in HCC development has never been evaluated. Methods: High-resolution array comparative genomic hybridization (CGH) was used to examine 17 female and 46 male HCC patients with chronic hepatitis B virus (HBV) infection in Shanghai, China. Two-tailed Fisher's exact or ${\chi}^2$ tests was used to compare CNAs between females and males. Results: The overall frequencies and patterns of CNAs in female and male cases were similar. However, female HCC tumors presented more copy number gains compared to those in males on 1q21.3-q22 (76.5% vs. 37.0%, P = 0.009), 11q11 (35.3% vs. 0.0%, P = 0.0002) and 19q13.31-q13.32 (23.5% vs. 0.0%, P = 0.004), and loss on 16p11.2 (35.3% vs. 6.5%, P = 0.009). Relative to females, male cases had greater copy number loss on 11q11 (63.0% vs. 17.6%, P = 0.002). Further analyses showed that 11q11 gain correlated with 19q13.31-q13.32 gain (P = 0.042), 11q11 loss (P = 0.011) and 16p11.2 loss (P = 0.033), while 1q21.3-q22 gain correlated with 19q13.31-q13.32 gain (P = 0.046). Conclusions: These findings suggest that CNAs may play a role in sex-related differences in HBVassociated HCC development.

UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION (인간 게놈의 Copy Number Variation과 유전자 질환)

  • Oh, Jung-Hwan;Nishimura, Ichiro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.2
    • /
    • pp.205-212
    • /
    • 2008
  • Genetic variation in the human genome occurs on various levels; from the single nucleotide polymorphism to large, microscopically visible chromosome anomalies. It can be present in many forms, including variable number of tandem repeat (VNTRs; e.g., mini- and microsatellites), presence/absence of transposable elements (e.g., Alu elements), single nucleotide polymorphisms, and structural alterations (e.g., copy number variation, segmental duplication, inversion, translocation). Until recently SNPs were thought to be the main source of genetic and phenotypic human variation. However, the use of methods such as array comparative genomic hybridization (array CGH) and fluorescence in situ hybridization (FISH) have revealed the presence of copy number variations(CNVs) ranging from kilobases (kb) to megabases (Mb) in the human genome. There is great interest in the possibility that CNVs playa role in the etiology of common disease such as HIV-1/AIDS, diabetes, autoimmune disease, heart disease and cancer. The discovery of widespread copy number variation in human provides insights into genetic variability among populations and provides a foundation for studies of the contribution of CNVs to evolution and disease.